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Abstract. For η ∈ S3, let S
av(η)
n denote the set of permutations in Sn

that avoid the pattern η, and let E
av(η)
n denote the expectation with

respect to the uniform probability measure on S
av(η)
n . For n ≥ k ≥ 2

and τ ∈ S
av(η)
k , let N

(k)
n (σ) denote the number of occurrences of k

consecutive numbers appearing in k consecutive positions in σ ∈ Sav(η)
n ,

and let N
(k;τ)
n (σ) denote the number of such occurrences for which the

order of the appearance of the k numbers is the pattern τ . We obtain

explicit formula formulas for E
av(η)
n N

(k;τ)
n and E

av(η)
n N

(k)
n , for all 2 ≤

k ≤ n, all η ∈ S3 and all τ ∈ Sav(η)
k . These exact formulas then yield

asymptotic formulas as n → ∞ with k fixed, and as n → ∞ with

k = kn → ∞. We also obtain analogous results for S
av(η1,··· ,ηr)
n , the

subset of Sn consisting of permutations avoiding the patterns {τi}ri=1,

where τi ∈ Smi , in the case that {τi}ni=1 are all simple permutations.

A particular case of this is the set of separable permutations, which

corresponds to r = 2, τ1 = 2413, τ2 = 3142.

1. Introduction and Statement of Results

Let k, n ∈ N with 2 ≤ k ≤ n. Let Pn denote the uniform probability

measure on the set Sn of permutations of [n] := {1, · · · , n} and denote

by En expectations corresponding to Pn. Denote a permutation σ ∈ Sn by

σ = σ1σ2 · · ·σn. The set of k consecutive numbers {l, l+1, · · · , l+k−1} ⊂ [n]

appears in a set of consecutive positions in the permutation if there exists
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an m such that {l, l + 1, · · · , l + k − 1} = {σm, σm+1, · · · , σm+k−1}. Let

Ak;ln ⊂ Sn denote the event that the set of k consecutive numbers {l, l +

1, · · · , l + k − 1} appears in a set of consecutive positions. It is immediate

that for any 1 ≤ l,m ≤ n−k+1, the probability that {l, l+1, · · · , l+k−1} =

{σm, σm+1, · · · , σm+k−1} is equal to k!(n−k)!
n! . Thus,

(1.1) Pn(Ak;ln ) = (n− k + 1)
k!(n− k)!

n!
∼ k!

nk−1
, as n→∞, for k ≥ 2.

Let N
(k)
n =

∑n−k+1
l=1 1

Ak;ln
denote the number of sets of k consecutive numbers

appearing in sets of consecutive positions, and let Akn = ∪n−k+1
l=1 Ak;ln denote

the event that there exists a set of k consecutive numbers appearing in a set

of consecutive positions. Then

(1.2) EnN
(k)
n = (n− k + 1)2

k!(n− k)!

n!
∼ k!

nk−2
, as n→∞, for k ≥ 2.

Using inclusion-exclusion along with (1.1), it is not hard to show that

(1.3) Pn(Akn) ∼ k!

nk−2
, as n→∞, for k ≥ 3.

It follows from (1.2) (or from (1.3)) that for k ≥ 3, the sequence {N (k)
n }∞n=1

converges to zero in probability. On the other hand, {N (2)
n }∞n=1 converges

in distribution to a Poisson random variable with parameter 2. This result

on the clustering of consecutive numbers in permutations goes back over 75

years; see [12], [6].

In this article, we study the clustering of consecutive numbers in per-

mutations avoiding a pattern of length three, as well as in permutations

that avoid a fixed number of patterns, all of which are simple, the defini-

tion of which is given below. We recall the definition of pattern avoidance

for permutations. If σ = σ1σ2 · · ·σn ∈ Sn and η = η1 · · · ηm ∈ Sm, where

2 ≤ m ≤ n, then we say that σ contains η as a pattern if there exists a

subsequence 1 ≤ i1 < i2 < · · · < im ≤ n such that for all 1 ≤ j, k ≤ m, the

inequality σij < σik holds if and only if the inequality ηj < ηk holds. If σ

does not contain η, then we say that σ avoids η. We denote by S
av(η)
n the

set of permutations in Sn that avoid η. If n < m, we define S
av(η)
n = Sn. We
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denote by P
av(η)
n the uniform probability measure on S

av(η)
n , and denote by

E
av(η)
n expectations corresponding to P

av(η)
n .

The main results in this paper concern permutations avoiding a pattern of

length three. Let η ∈ S3, k ≥ 2 and τ ∈ Sav(η)
k . For σ ∈ Sav(η)

n , with n ≥ k,

let N
(k;τ)
n (σ) denote the number of occurrences of k consecutive numbers

appearing in k consecutive positions in σ, and such that the order of their

appearance is the pattern τ . (Such an occurrence is defined by the existence

of 1 ≤ l,m ≤ n−k+1 such that {l, l+1, · · · , l+k−1} = {σm, · · · , σm+k−1}

and in addition, τi = σm+i−1− (l−1), i = 1, · · · , k.) Let N
(k)
n (σ) denote the

number of occurrences of k consecutive numbers appearing in k consecutive

positions in σ, without regard to the order of their appearance; that is,

N
(k)
n (σ) =

∑
τ∈Sav(η)

k

N
(k;τ)
n (σ). We obtain explicit formulas for E

av(η)
n N

(k;τ)
n

and E
av(η)
n N

(k)
n , for all 2 ≤ k ≤ n, all η ∈ S3 and all τ ∈ Sav(η)

k . (Of course,

P
av(η)
n (N

(k;τ)
n = 0) = 1, if τ ∈ Sk − S

av(η)
k .) These exact formulas then

yield asymptotic formulas as n → ∞ with k fixed, and as n → ∞ with

k = kn →∞.

Although there are six permutations η in S3, it suffices to consider just

two of them—one from {132, 213, 231, 312} and one from {123, 321}. Indeed,

recall that the reverse of a permutation σ = σ1 · · ·σn is the permutation

σrev := σn · · ·σ1, and the complement of σ is the permutation σcom satisfying

σcomi = n+1−σi, i = 1, · · · , n. Let σrev-com denote the permutation obtained

by applying reversal and then complementation to σ (or equivalently, vice

versa). It is immediate that the quantity E
av(η)
n N

(k;τ)
n remains unchanged

if each of η and τ is replaced by its reversal, or by its complementation,

or by its complementation-reversal. Thus, it suffices to consider, say 231

and 321, since the three permutations 132, 213 and 312 are obtained from

231 respectively by reversal, complementation and complementaion-reversal,

and the permutation 123 is obtained from 321 by reversal. We will prove

our results for the patterns 231 and 321, but we state them in complete

generality.
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Denote the nth Catalan number by Cn: Cn = 1
n+1

(
2n
n

)
. As is well known,

|Sav(η)
n | = Cn, for all η ∈ S3 and all n ∈ N [3, 11].

Theorem 1. Let η ∈ {132, 213, 231, 312}.

i. Let 2 ≤ k ≤ n and define τ∗(η) ∈ Sav(η)
k by

(1.4) τ∗(η) =

k · · · 1, if η = 231 or 312;

1 · · · k, if η = 132 or η = 213.

For τ ∈ Sav(η)
k ,

(1.5) Eav(η)
n N (k;τ)

n =


(n−k+2)Cn−k+1

2Cn
, if τ 6= τ∗(η);

(n−k+3)Cn−k+2

2Cn
− (n−k+2)Cn−k+1

Cn
, if τ = τ∗(η).

.

Also,

(1.6) lim
n→∞

N
(k;τ)
n

E
av(η)
n N

(k;τ)
n

= 1 in probability.

ii.

(1.7) Eav(η)
n N (k)

n =
Cn−k+1

2Cn

(
(n− k + 2)Ck + n− k

)
.

Also,

(1.8) lim
n→∞

N
(k)
n

E
av(η)
n N

(k)
n

= 1 in probability.

Remark. It is easy to check that E
av(η)
n N

(k;τ)
n is larger for τ = τ∗(η) than

for τ 6= τ∗(η), for all n > k. (For n = k, they are both of course equal to

1
Ck

.)

Using the fact that Cn ∼ 4n
√
πn

3
2

, the following corollary of Theorem 1

follows by straightforward calculation.

Corollary 1. Let η ∈ {132, 213, 231, 312} and let τ∗(η) be as in (1.4).

i. Let τ∗(η) 6= τ ∈ Sav(η)
k . Then

(1.9)
lim
n→∞

1

n
Eav(η)
n N (k;τ)

n =
1

2 · 4k−1
;

Eav(η)
n N (kn;τ)

n ∼ n

2 · 4kn−1
, if kn = o(n).
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ii. Let τ = τ∗(η). Then

(1.10)
lim
n→∞

1

n
Eav(η)
n N (k;τ)

n =
1

4k−1
;

Eav(η)
n N (kn;τ)

n ∼ n

4kn−1
, if kn = o(n).

iii.

(1.11)

lim
n→∞

1

n
Eav(η)
n N (k)

n =
Ck + 1

2 · 4k−1
;

Eav(η)
n N (kn)

n ∼ 2√
π

n

k
3
2
n

, if lim
n→∞

kn =∞ and kn = o(n).

Remark. From (1.11), it follows that E
av(η)
n N

(kn)
n remains bounded away

from zero when n→∞ if and only if kn = O(n
2
3 ), and from (1.9) and (1.10)

it follows that E
av(η)
n N

(kn;τ)
n remains bounded away from zero when n→∞

if and only if lim supn→∞(kn − logn
log 4 ) <∞.

Theorem 2. Let η ∈ {123, 321}.

i. Let 2 ≤ k ≤ n and define τ∗(η) ∈ Sav(η)
k by

(1.12) τ∗(η) =

k · · · 1, if η = 123;

1 · · · k, if η = 321.

For τ ∈ Sav(η)
k ,

(1.13) Eav(η)
n N (k;τ)

n =


Cn−k+1

Cn
, if τ 6= τ∗(η);

(n− k + 1)
Cn−k+1

Cn
, if τ = τ∗(η).

ii.

(1.14) Eav(η)
n N (k)

n =
Cn−k+1(n− k + Ck)

Cn
.

Remark 1. From (1.5) and (1.13), it follows that for each k ≥ 2, E
av(η)
n N

(k;τ)
n

has linear growth in n, for all pairs (η, τ), with η ∈ {132, 213, 231, 312} and

τ ∈ Sav(η)
k , and for the pairs η = 123, τ = k · · · 1 and η = 321, τ = 1 · · · k.

On the other hand E
av(η)
n N

(k;τ)
n is bounded and bounded away from zero for

η = 123 and k · · · 1 6= τ ∈ Sav(123)
k and for η = 321 and 1 · · · k 6= τ ∈ Sav(321)

k .
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Remark 2. We elaborate on the behavior in the case of the pairs η = 123

and kk − 1 · · · 1 6= τ ∈ Sav(123)
k , and the pairs η = 321 and 12 · · · k 6= τ ∈

S
av(321)
k . Consider, for example, η = 321 and 12 · · · k 6= τ ∈ S

av(321)
k . As

is well known, every permutation in S
av(321)
n is composed of two increasing

subsequences. (The two subsequences are not necessarily unique; for exam-

ple, the permutation 145236798 ∈ Sav(321)
9 is composed of the two increasing

subsequence 12379 and 4568 as well as of the two increasing subsequences

12368 and 4579.) A cluster of length k and pattern τ in σ ∈ Sav(321)
n will

necessarily have to include numbers from both increasing subsequences cor-

responding to σ. Theorem 2 states that the expected number of such se-

quences is bounded (and bounded away from zero) as n→∞. This means

that the two subsequences have very little intertwining.

The following corollary of Theorem 2 follows by straightforward calcula-

tion.

Corollary 2. Let η ∈ {123, 321} and let τ∗(η) be as in (1.12).

i. Let τ∗(η) 6= τ ∈ Sav(η)
k . Then

lim
n→∞

Eav(η)
n N (k;τ)

n =
1

4k−1
;

Eav(η)
n N (kn;τ)

n ∼ 1

4kn−1
, if kn = o(n).

ii. Let τ = τ∗(η). Then

(1.15)
lim
n→∞

1

n
Eav(η)
n N (k;τ)

n =
1

4k−1
;

Eav(η)
n N (kn;τ)

n ∼ n

4kn−1
, if kn = o(n).

iii.

(1.16)

lim
n→∞

1

n
Eav(η)
n N (k)

n =
1

4k−1
;

Eav(η)
n N (k)

n ∼ n

4kn−1
+

4
√
πk

3
2
n

, if lim
n→∞

kn =∞ and kn = o(n).

Remark. From (1.15) and (1.16), it follows that each of E
av(η)
n N

(kn)
n and

E
av(η)
n N

(kn;τ∗(η))
n remains bounded away from zero when n→∞ if and only

if lim supn→∞(kn − logn
log 4 ) <∞.
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The methods of proof for Theorem 1 and Theorem 2 are completely differ-

ent from one another. The proof of Theorem 1 exploits generating functions,

whereas the proof of Theorem 2 is much more of a purely combinatorial ar-

gument. The method of proof of Theorem 2 easily extends to allow one to

obtain similar results for permutations avoiding simple patterns. A permu-

tation η ∈ Sm is called simple if η 6∈ A(m)
k;l , for all k ∈ {2, · · · ,m − 1} and

all l ∈ N satisfying k + l − 1 ≤ m. (Equivalently, η is simple if and only if

{ηa, · · · , ηa+k−1} is not equal to a block of k consecutive numbers in [m], for

all k ∈ {2, · · · ,m−1} and all a ∈ N satisfying a+k−1 ≤ m.) For example,

6241753 is a simple permutation in S7, but 6241375 is not, because of the

block 2413. Note that there are no simple permutations in S2 or S3.

For r ∈ N and a collection of permutations {ηi}ri=1, with ηi ∈ Smi , where

mi ≥ 2, denote by S
av(η1,··· ,ηr)
n the set of permutations in Sn that avoid all of

the patterns {ηi}ri=1. Denote by P
av(η1,··· ,ηr)
n the uniform probability measure

on S
av(η1,··· ,ηr)
n , and denote by E

av(η1,··· ,ηr)
n expectations corresponding to

P
av(η1,··· ,ηr)
n . For σ ∈ S

av(η1,··· ,ηr)
n and τ ∈ S

av(η1,··· ,ηr)
k , with 2 ≤ k ≤ n,

let N
(k;τ)
n (σ) denote the number of occurrences of k consecutive numbers

appearing in k consecutive positions in σ, and such that the order of their

appearance is the pattern τ . Let N
(k)
n (σ) denote the number of occurrences

of k consecutive numbers appearing in k consecutive positions in σ, without

regard to the order of their appearance.

Theorem 3. Let r ∈ N and let {ηi}ri=1, with ηi ∈ Smi and mi ≥ 4, be simple

permutations. Then for 2 ≤ k ≤ n and τ ∈ Sav(η1,··· ,ηm)
k ,

(1.17) Eav(η1,··· ,ηr)
n N (k;τ)

n =
(n− k + 1)|Sav(η1,··· ,ηr)

n−k+1 |

|Sav(η1,··· ,ηm)
n |

.

Also,

(1.18) Eav(η1,··· ,ηm)
n N (k)

n =
(n− k + 1)|Sav(η1,··· ,ηr)

n−k+1 | |Sav(η1,··· ,ηm)
k |

|Sav(η1,··· ,ηm)
n |

.

We elaborate on two particular cases of Theorem 3.

A separable permutation is a permutation that can be constructed from

the singleton in S1 via a series of iterations of direct sums and skew sums.
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(See [9], for example, for more details.) An equivalent definition of a sep-

arable permutation [4] is a permutation that avoids the two patterns 2413

and 3142. The generating function for the enumeration of separable permu-

tations is known explicitly and allows one to show [5, p. 474-475] that

(1.19) |Ssep
n | ∼

1

2
√
πn3

(3− 2
√

2)−n+
1
2 .

(The sequence on the right hand side of (1.19) is the sequence of big Schröder

numbers–A006318 in the On-Line Encyclopedia of Integer Sequences.) Let

Ssep
n denote the set of separable permutations in Sn, let P sep

n denote the

uniform probability measure on Ssep
n and let Esep

n denote the corresponding

expectation. Since the permutations 2413 and 3142 are simple, the following

result follows immediately from Theorem 3 and (1.19).

Corollary 3. For 2 ≤ k ≤ n and τ ∈ Ssep
k ,

Esep
n N (k;τ)

n =
(n− k + 1)|Ssep

n−k+1|
|Ssep
n |

,

and

lim
n→∞

Esep
n N

(k;τ)
n

n
= (3− 2

√
2)k−1.

Also,

Esep
n N (k)

n =
(n− k + 1)|Ssep

n−k+1| |S
sep
k |

|Ssep
n |

,

and

lim
n→∞

Esep
n N

(k)
n

n
= (3− 2

√
2)k−1|Ssep

k |.

One formulation of the Stanley-Wilf conjecture, completely proved in [7],

states that for every permutation τ ∈ Sm, m ≥ 2, there exists a number

L(τ) > 1 such that

lim
n→∞

|Sn(τ)|
1
n = L(τ).

We refer to L(τ) as the Stanley-Wilf limit. Furthermore, it is known that

(1.20) lim
n→∞

|Sn+1(τ)|
|Sn(τ)|

= L(τ), for any simple permutation τ ∈ Sk, k ≥ 2.
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Indeed, (1.20) was proven in [2] for a wide class of permutations τ , includ-

ing all simple ones. Thus, the following asymptotic result follows as an

immediate corollary of Theorem 3 and (1.20).

Corollary 4. Let η ∈ Sm, m ≥ 4, be a simple permutation. Then for

2 ≤ k ≤ n and τ ∈ Sav(η)
k ,

lim
n→∞

1

n
Eav(η)
n N (k;τ)

n =
1

L(τ)k−1
,

and

lim
n→∞

1

n
Eav(η)
n N (k)

n =
|Sav(η)
k |

L(τ)k−1
,

where L(τ) is the Stanley-Wilf limit.

This leads to a natural question.

Open Question. Is it true that for every η ∈ ∪∞j=1Sj and all k ≥ 2, the

expectation E
av(η)
n N

(k)
n grows linearly in n, or equivalently, that there exists

a τ ∈ Sav(η)
k such that the expectation E

av(η)
n N

(k;τ)
n grows linearly in n?

The recent paper [10] studied the clustering of consecutive numbers under

Mallows distributions.

In section 2, we prove Theorem 1, except for the law of large numbers in

(1.6) and (1.8). Of course, (1.8) follows immediately from (1.6). Using the

second moment method, (1.6) follows immediately from Corollary 1 and the

following proposition, which we prove in section 3.

Proposition 1. Under the assumptions in Theorem 1, for all τ ∈ Sav(η)
k ,

Var(N
(k;τ)
n ) = o(n2).

We prove Theorem 2 in section 4 and Theorem 3 in section 5.

2. Proof of Theorem 1

As noted before the statement of the theorem, it suffices to consider the

case η = 231. Let k ≥ 2 and τ ∈ Sav(231)
k . We consider n ≥ k. The following

definition will be useful. Let a1 < a2 · · · < am be real numbers and let

ρ = ρ1 · · · ρm be a permutation of these numbers. We define red(ρ) ∈ Sm,
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the reduction of ρ, to be the permutation in Sm that has the same pattern

as ρ. That is, red(ρ) = σ if σ satisfies σi < σj whenever ρi < ρj , i, j ∈ [m].

Every permutation σ ∈ Sav(231)
k has the property that if σj = n, then the

numbers {1, · · · , j − 1} appear in the first j − 1 positions in σ (and then

of course, the numbers {j, · · · , n − 1} appear in the last n − j positions in

σ.) This fact will be used frequently in the proof without further comment.

From this fact, along with the fact that |Sav(η)
n | = Cn, it follows that

(2.1) P av(231)
n (σj = n) =

Cj−1Cn−j
Cn

, for j ∈ [n].

It also follows that under the conditioned measure P
av(231)
n |{σj = n}, the

permutation σ1 · · ·σj−1 ∈ Sj−1 has the distribution P
av(231)
j−1 , the permuta-

tion red(σj+1 · · ·σn) has the distribution P
av(231)
n−j , and these two permuta-

tions are independent. Note that the following well-known recursion formula

for the Catalan numbers follows from (2.1).

(2.2) Cn =
n∑
j=1

Cj−1Cn−j , n ∈ N.

The key to proving the theorem is the following proposition, whose rather

long technical proof will be postponed until we have completed the proof of

the theorem.

Proposition 2. For each m ∈ N, each σ ∈ Sav(231)
m and each A ⊂ S

av(231)
m ,

let the random variables N
(k;τ)
m (·), 1σ(·) and 1A(·) be defined on the proba-

bility space (Sm, P
av(231)
m ).

i. Let k k − 1 · · · 1 6= τ ∈ Sav(231)
k . Denote ik = τ−1k . Then

(2.3) N (k;τ)
n |{σj = n} dist

= N
(k;τ)
j−1 +N

(k;τ)
n−j + 1{j=n−k+ik}1Aln−k+ik−1

1σ∗,k−ik ,

where

(2.4) σ∗,k−ik = red(τik+1τik+2 · · · τk) ∈ S
av(231)
k−ik

and

(2.5) Aln−k+ik−1 = {σ ∈ Sav(231)
n−k+ik−1 : σn−k+l = τl + n− k, l = 1 · · · ik − 1},
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and where N
(k,τ)
j−1 is independent of N

(k,τ)
n−j , and the pair N

(k,τ)
n−k+ik−1, 1Aln−k+ik−1

is independent of the pair N
(k,τ)
k−ik , 1σ∗,k−ik . If ik = k, then we understand

1σ∗,k−ik to be the constant 1, and if ik = 1, then we understand Aln−k+ik−1

to be the constant 1.

ii. Let τ = k k − 1 · · · 1. Then

(2.6) N (k;τ)
n |{σj = n} dist

= N
(k;τ)
j−1 +N

(k;τ)
n−j + 1{j≤n−k+1}1Arn−j ,

where

(2.7) Arn−j = {σ ∈ Sn−j : σl = n− j + 1− l, l = 1, · · · , k − 1},

and where N
(k,τ)
j−1 is independent of the pair N

(k,τ)
n−j , 1An−j .

(The superscripts l and r in (2.5) and (2.7) are just used to distinguish

the two sets, and stand for “left” and “right”, because of how they arise in

the proof.)

Let sτn = E
av(231)
n N

(k;τ)
n . Of course, sτn = 0, for n = 1, · · · , k− 1. For con-

venience, define sτ0 = 0. The following result follows easily from Proposition

2.

Proposition 3. For 2 ≤ k ≤ n,

(2.8)

sτn =

2
∑n

j=1
Cj−1Cn−j

Cn
sτj−1 +

Cn−k
Cn

, if k k − 1 · · · 1 6= τ ∈ Sav(231)
k ;

2
∑n

j=1
Cj−1Cn−j

Cn
sτj−1 +

Cn−k+1

Cn
, if τ = k k − 1 · · · 1.

Proof. From (2.1), (2.5) and (2.7), it follows that

(2.9) P av(231)
n (Aln) =

Cn−k
Cn−k+ik−1

; P av(231)
n (Arn) =

Cn−j−k+1

Cn−j
.

From (2.1), (2.3) and (2.9), we have

sτn =
n∑
j=1

Cj−1Cn−j
Cn

(sτj−1 + sτn−j) +
Cn−k+ik−1Ck−ik

Cn

Cn−k
Cn−k+ik−1

1

Ck−ik
=

2
n∑
j=1

Cj−1Cn−j
Cn

sτj−1 +
Cn−k
Cn

, for k k − 1 · · · 1 6= τ ∈ Sav(231)
k ,
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and from (2.1), (2.6) and (2.9), we have

sτn =

n∑
j=1

Cj−1Cn−j
Cn

(sτj−1 + sτn−j) +

n−k+1∑
j=1

Cj−1Cn−j
Cn

Cn−j−k+1

Cn−j
=

2
n∑
j=1

Cj−1Cn−j
Cn

sτj−1 +
Cn−k+1

Cn
, for τ = k k − 1 · · · 1,

where the last equality follows from (2.2). �

Define

(2.10) G(k,τ)(t) =

∞∑
j=k

Cjs
τ
j t
j ,

and let

C(t) =

∞∑
j=0

Cjt
j

denote the generating function of the Catalan numbers. As is well-known

[8],

(2.11) C(t) =
1−
√

1− 4t

2t
, |t| ≤ 1

4
.

We use Proposition 3 to prove the following result.

Proposition 4. For |t| ≤ 1
4 ,

(2.12) G(k,τ)(t) =


tkC(t)

1−2tC(t) , if k k − 1 · · · 1 6= τ ∈ Sav(231)
k ;

tk−1(C(t)−1)
1−2tC(t) , if τ = k k − 1 · · · 1.

Proof. Multiplying the first line of (2.8) by Cnt
n and summing over n from

k to ∞ gives

G(k,τ)(t) = 2tC(t)G(k,τ)(t) + tkC(t), k k − 1 · · · 1 6= τ ∈ Sk,

and solving above for G(k,τ)(t) gives (2.12) for τ 6= k k− 1 · · · 1. Multiplying

the second line of (2.8) by Cnt
n and summing over n from k to ∞ gives

G(k,τ)(t) = 2tC(t)G(k,τ)(t) + tk−1(C(t)− 1), τ = k k − 1 · · · 1,

and solving above for G(k,τ)(t) gives (2.12) for τ = k k − 1 · · · 1.

�
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We now use Proposition 4 to prove Theorem 1.

Proof of Theorem 1. Part (i). From (2.11), we have

(2.13)
tC(t)

1− 2tC(t)
=

1

2

(
(1− 4t)−

1
2 − 1

)
.

A direct calculation [8, p.41] reveals that

(2.14)

(
(1− 4t)

1
2

)(n)|t=0

n!
= − 2

2n− 1

(
2n− 1

n

)
, n ≥ 2.

From (2.14) and the fact that
(
(1− 4t)

1
2

)′
= −2(1− 4t)−

1
2 , it follows that

(2.15)

(
(1− 4t)−

1
2

)
)(n)|t=0

n!
= −1

2

(
(1− 4t)

1
2

)(n+1)|t=0

n!
=

− n+ 1

2

(
(1− 4t)

1
2

)(n+1)|t=0

(n+ 1)!
= −n+ 1

2

(
− 2

2n+ 1

(
2n+ 1

n+ 1

))
=

(n+ 1)Cn, n ≥ 1.

Now (2.13) and (2.15) give

(2.16)
tC(t)

1− 2tC(t)
=
∞∑
n=1

n+ 1

2
Cnt

n.

Consider first the case k k−1 · · · 1 6= τ ∈ Sk. Then from (2.12) and (2.16)

(2.17) G(k,τ)(t) =
∞∑
n=1

n+ 1

2
Cnt

n+k−1,

which along with (2.10) gives

(2.18) Eav(231)
n N (k;τ)

n = sτn =
(n− k + 2)Cn−k+1

2Cn
,

which is (1.5) for τ 6= k k − 1 · · · 1 and η = 231.

Now consider the case τ = k k − 1 · · · 1. From (2.11), we have

(2.19)
1

1− 2tC(t)
= (1− 4t)−

1
2 .

Using this with (2.15) gives

(2.20)
tk−1

1− 2tC(t)
=

∞∑
n=0

(n+ 1)Cnt
n+k−1.
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From (2.12), (2.16) and (2.20), we obtain

(2.21)

G(k,τ)(t) =
tk−1C(t)

1− 2tC(t)
− tk−1

1− 2tC(t)
=
∞∑
n=1

(n+ 2

2
Cn+1 − (n+ 1)Cn

)
tn+k−1.

From (2.10) and (2.21), we obtain

(2.22) Eav(231)
n N (k;τ)

n = sτn =
(n− k + 3)Cn−k+2

2Cn
− (n− k + 2)Cn−k+1

Cn
,

which is (1.5) for τ = k k − 1 · · · 1 and η = 231. �

Part (ii). From (2.18) and (2.22), we have

(2.23)

Eav(231)
n N (k)

n = (Ck − 1)
(n− k + 2)Cn−k+1

2Cn
+

(n− k + 3)Cn−k+2

2Cn
− (n− k + 2)Cn−k+1

Cn
.

Using the formula Cm+1 = 2(2m+1)
m+2 Cm to write Cn−k+2 in terms of Cn−k+1

in (2.23), and performing some algebra, gives

Eav(231)
n N (k)

n =
Cn−k+1

2Cn

(
(n− k + 2)Ck + n− k

)
,

which is (1.7) for η = 231. �

We now return to prove Proposition 2.

Proof of Proposition 2. In order to make the proof more transparent, we

first derive it for three particular choices of τ—216345, 621345 and 654321.

The proofs of these particular cases will make the general case much easier

to follow.

We begin with τ = 216345. We show that

(2.24)

N (6;216345)
n |{σj = n} dist

= N
(6;216345)
j−1 +N

(6;216345)
n−j + 1{j=n−3}1Aln−4

1σ∗,3 ,

where

(2.25) σ∗,3 = 123 = red(τ4τ5τ6) ∈ Sav(231)
3

and

(2.26) Aln−4 = {σ ∈ Sav(231)
n−4 : σn−5 = n− 4, σn−4 = n− 5},
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and whereN
(6;216345)
j−1 is independent ofN

(6;216345)
n−j , and the pairN

(6;216345)
n−4 , 1Aln−4

is independent of the pairN
(6;216345)
3 , 1σ∗,3 . The termsN

(6;216345)
j−1 andN

(6;216345)
n−j

on the right hand side of (2.24) are clear; they count the number of clusters

of length k and pattern 216345 from σ1 · · · , σj−1 and from σj+1 · · ·σn. We

now show that the term, 1{j=n−3}1Aln−4
1σ∗,3 counts clusters of length 6 and

pattern 216345 that involve the number n = σj . Such a cluster that includes

the number n = σj can only be the cluster

(2.27)

σj−2 = n− 4, σj−1 = n− 5, σj = n, σj+1 = n− 3, σj+2 = n− 2, σj+3 = n− 1.

Furthermore, since σ ∈ Sav(231)
n , (2.27) can only occur if j = n− 3. Indeed,

if j > n − 3 or j ≤ 2, then obviously (2.27) cannot occur, while if 3 ≤

j < n − 3, then it would follow from (2.27) that σj+4 ≤ n − 6. But then

σj−1σjσj+4 would have the pattern 231. Finally, given that σn−3 = n,

σ ∈ Sav(231)
n satisfies (2.27) with j = n− 3 if and only if σ1 · · ·σn−4 ∈ Aln−4

and red(σn−2σn−1σn) = σ∗,3 where Aln−4 is as in (2.26) and σ∗,3 is as in

(2.25). The above-noted independence follows from the sentence following

(2.1). In the sequel, we will refrain from commenting on the justification for

independence, as it will always follow from the above-noted sentence.

Consider now the case τ = 621345. We show that

(2.28) N (6;621345)
n |{σj = n} dist

= N
(6;621345)
j−1 +N

(6;621345)
n−j + 1{j=n−5}1σ∗,5 ,

where

(2.29) σ∗,5 = 21345 = red(τ2 · · · τ6)

and where N
(6;621345)
j−1 is independent of N

(6;621345)
n−j , and N

(6;621345)
n−6 is in-

dependent of the pair N
(6;621345)
5 , 1σ∗,5 . Again, the roles of N

(6;621345)
j−1 and

N
(6;621345)
n−j are clear. We show that the term 1{j=n−5}1σ∗,5 counts those clus-

ters of length 6 and pattern 621345 that involve the number n = σj . Such

a cluster that includes the number n = σj can only be the cluster

(2.30)

σj = n, σj+1 = n− 4, σj+2 = n− 5, σj+3 = n− 3, σj+4 = n− 2, σj+5 = n− 1.
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Furthermore, since σ ∈ Sav(231)
n , this can occur only if j = n− 5. Indeed, if

j > n−5, then obviously (2.30) cannot occur, while if j < n−5, then it would

follow from (2.30) that σj+6 ≤ n− 6. But then, for example, σj+1σj+3σj+6

would have the pattern 231. Finally, given that σn−5 = n, σ ∈ S
av(231)
n

satisfies (2.30) with j = n − 5 if and only if red(σn−4 · · ·σn) = σ∗,5, where

σ∗,5 is as in (2.29).

The argument above for τ = 621345 works just as well for any other

τ ∈ S6 with τ1 = 6, except for τ = 654321, which we now consider. We will

show that

(2.31) N (6;654321)
n |{σj = n} dist

= N
(6;654321)
j−1 +N

(6;654321)
n−j + 1{j≤n−5}1Arn−j ,

where

(2.32) Arn−j = {σ ∈ Sav(231)
n−j : σl = n− j + 1− l, l = 1, · · · , 5},

and where N
(6;654321)
j−1 is independent of the pair N

(6;654321)
n−j , 1Arn−j . Again,

the roles of N
(6;654321)
j−1 and N

(6;654321)
n−j are clear. We now show that the term

1{j≤n−5}1Arn−j counts clusters of length 6 and pattern 654321 that involve

the number n = σj . Such a cluster that includes the number n = σj can

only be the cluster

(2.33)

σj = n, σj+1 = n− 1, σj+2 = n− 2, σj+3 = n− 3, σj+4 = n− 4, σj+5 = n− 5.

Of course, (2.33) cannot occur if j > n − 5; this accounts for the term

1{j≤n−5}. In the previous case, we also ruled out j < n − 5 because that

would lead to the existence of the pattern 231. In the present case, because

the pattern in (2.33) is decreasing, the argument in the above case no longer

goes through. Finally, for j ≤ n − 5 and given that σj = n, σ ∈ Sav(231)
n

satisfies (2.33) if and only if red(σj+1 · · ·σn) ∈ Arn−j , where Arn−j is as in

(2.32).

With the above particular cases explained, we now turn to the proof of

the general case. Let ik = τ−1k . We first assume that ik 6= 1. We will

show that part (i) of the proposition holds. The terms N
(k,τ)
j−1 and N

(k;τ)
n−j on
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the right hand side of (2.3) are clear; they count the number of clusters of

length k and pattern τ from σ1 · · · , σj−1 and from σj+1 · · ·σn. We now show

that the term 1{j=n−k+ik}1Aln−k+ik−1
1σ∗,k−ik counts clusters of length k and

pattern τ that involve the number n = σj . Of course, the only candidate for

such a cluster is σj−ik+1σj−ik+2 · · ·σj+k−ik , and this will indeed constitute

such a cluster if and only if

(2.34) red(σj−ik+1σj−ik+2 · · ·σj+k−ik) = τ.

We now show that (2.34) can only occur if j = n − k + ik. This will

account for the term 1{j=n−k+ik}. Indeed, if j > n − k + ik or j ≤ ik − 1,

then obviously (2.34) cannot occur. Now consider ik ≤ j < n − k + ik.

Since {σj−ik+1, σj−ik+2, · · ·σj+k−ik} = {n − k + 1, · · · , n}, it would follow

from (2.34) that σj+k−ik+1 ≤ n− k. But then σj−1σjσj+k−ik+1 would have

the pattern 231, which is forbidden. Thus, we conclude that there will be

either one such cluster involving n or no such cluster involving n, and the

condition for the existence of such a cluster is

(2.35) red(σn−k+1 · · ·σn) = τ.

Finally, given σn−k+ik = n, σ ∈ S
av(231)
n satisfies (2.35) if and only if

σ1 · · ·σn−k+ik−1 ∈ Aln−k+ik−1, where Aln−k+ik−1 is as in (2.5) and, if ik 6= k,

then also red(σn−k+ik+1 · · ·σn) = σ∗,k−ik , where σ∗,k−ik is as in (2.4).

We now consider the case that ik = 1. Here we need to consider two

subcases—the case that τ 6= kk − 1 · · · 1, and the case that τ = kk − 1 · · · 1.

We first consider the subcase that τ 6= kk−1 · · · 1. We will show that part (i)

of the proposition holds. Again, the roles of N
(k;τ)
j−1 and N

(k;τ)
n−j are clear. We

now show that the term 1{j=n−k+1}1σ∗,k−1 counts clusters of length k and

pattern τ that involve the number n = σj . Of course, the only candidate

for such a cluster is σjσj+1 · · ·σj+k−1, and this will indeed constitute such

a cluster if and only if

(2.36) red(σjσj+1 · · ·σj+k−1) = τ.



18 ROSS G. PINSKY

We now show that (2.36) can only occur if j = n− k+ 1. This will account

for the term 1{j=n−k+1}. Indeed, if j > n − k + 1, then obviously (2.36)

cannot occur. Now consider j < n − k + 1. Since {σj , σj+1, · · ·σj+k−1} =

{n − k + 1, · · · , n}, it would follow from (2.36) that σj+k ≤ n − k. Also,

since by assumption, τ2 · · · τk 6= k − 1 · · · 1, it follows from (2.36) that there

exist indices l1 < l2 from the set {j + 1, · · · , j + k − 1} such that σl1 < σl2 .

But then σl1σl2σj+k would have the pattern 231, which is forbidden. Thus,

we conclude that there will be either one such cluster involving n or no such

cluster involving n, and the condition for the existence of such a cluster is

(2.37) red(σn−k+1 · · ·σn) = τ.

Finally, given σn−k+1 = n, σ ∈ S
av(231)
n satisfies (2.37) if and only if

red(σn−k+2 · · ·σn) = σ∗,k−1, where σ∗,k−1 is as in (2.4) with ik = 1.

We now turn to the subcase τ = k k − 1 · · · 1 of the case τ1 = k. We

will show that part (ii) of the proposition holds. Again, the roles of N
(k;τ)
j−1

and N
(k;τ)
n−j are clear. We now show that the term 1{j≤n−k+1}1Arn−j counts

clusters of length k and pattern τ that involve the number n = σj . Of

course, the only candidate for such a cluster is σjσj+1 · · ·σj+k−1, and this

will indeed constitute such a cluster if and only if

(2.38) red(σjσj+1 · · ·σj+k−1) = τ = k · · · 1.

Of course, (2.38) cannot occur if j > n − k + 1; this accounts for the term

1{j≤n−k+1}. Finally, given that σj = n, it follows that for 1 ≤ j ≤ n− k+ 1,

σ ∈ S
av(231)
n satisfies (2.38) if and only if red(σj+1 · · ·σn) ∈ Arn−j , where

Arn−j is as in (2.7). �

3. Proof of Proposition 1

As noted before the statement of Theorem 1, it suffices to consider the

case η = 231. Let 2 ≤ k ≤ n. We will prove the proposition for the case that

τ ∈ Sav(231)
k satisfies τ 6= k · · · 1. The proof uses part (i) of Proposition 2.

The case τ = k · · · 1 is treated similarly, using part (ii) of that proposition.
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From part (i) of Proposition 2, it follows that for 2 ≤ k ≤ n,

(3.1)

(N (k;τ)
n )2|{σj = n} dist

= (N
(k;τ)
j−1 )2 + (N

(k;τ)
n−j )2 + 2N

(k;τ)
j−1 N

(k;τ)
n−j , j 6= n− k + ik;

(N (k;τ)
n )2|{σj = n} dist

= (N
(k;τ)
j−1 )2 + (N

(k;τ)
n−j )2 + 2N

(k;τ)
j−1 N

(k;τ)
n−j +

2
(
N

(k;τ)
j−1 +N

(k;τ)
n−j

)
1Aln−k+ik−1

1σ∗,k−ik + 1Aln−k+ik−1
1σ∗,k−ik , j = n− k + ik,

where the notation in (3.1) is as in Proposition 2. Let rτn = E
av(231)
n (N

(k;τ)
n )2

and recall from section 2 that sτn = E
av(231)
n N

(k;τ)
n . From (3.1) and (2.1),

along with the independence of certain random variables as indicated in

Proposition 2, it follows that

rτn = 2
n∑
j=1

Cj−1Cn−j
Cn

rτj−1 + 2
n∑
j=1

Cj−1Cn−j
Cn

rτj−1s
τ
j−1s

τ
n−j+

Cn−k+ik−1Ck−ik
Cn

(
2E

av(231)
n−k+ik−1N

(k;τ)
n−k+ik−11Aln−k+ik−1

)
P

av(231)
k−ik (σ∗,k−ik)+

Cn−k+ik−1Ck−ik
Cn

P
av(231)
n−k+ik−1(A

l
n−k+ik−1)P

av(231)
k−ik (σ∗,k−ik),

where we have used the fact that Nk;τ
n = 0, for n < k. Using the fact

that P
av(231)
k−ik (σ∗,k−ik) = 1

Ck−ik
along with (2.9), we can rewrite the above

equation as

(3.2)

rτn = 2

n∑
j=1

Cj−1Cn−j
Cn

rτj−1 + 2

n∑
j=1

Cj−1Cn−j
Cn

rτj−1s
τ
j−1s

τ
n−j+

2
Cn−k+ik−1

Cn
E

av(231)
n−k+ik−1N

(k;τ)
n−k+ik−11Aln−k+ik−1

+
Cn−k
Cn

.

Define

W (t) =
∞∑
n=k

Cn−k+ik−1
(
E

av(231)
n−k+ik−1N

(k;τ)
n−k+ik−11Aln−k+ik−1

)
tn.

Note that

(3.3)

E
av(231)
n−k+ik−1N

(k;τ)
n−k+ik−11Aln−k+ik−1

≤ Eav(231)
n−k+ik−1N

(k;τ)
n−k+ik−1 = sτn−k+ik−1.

Recalling the definition of G(k;τ)(t) in (2.10), we note for later use that for

each n, the coefficient of tn in the power series defining W (t) is less than or
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equal to the coefficient of tn in the power series for G(k;τ)(t). This follows

from (3.3). Define

R(k;τ)(t) =

∞∑
n=k

Cnr
τ
nt
n.

Multiplying (3.2) by Cnt
n and summing over n from k to ∞, and recalling

the definition of G(k;τ)(t), we obtain

R(k;τ)(t) = 2C(t)R(k;τ)(t) + 2t(G(k;τ)(t))2 + tk−ik+1W (t) + tkC(t),

from which it follows that

(3.4) R(k;τ)(t) =
2t(G(k;τ)(t))2 + tk−ik+1W (t) + tkC(t)

1− 2tC(t)
.

Using (2.11) and (2.12), we obtain after some algebra,

(3.5)
2t(G(k;τ)(t))2

1− 2tC(t)
= (t2k−1 − 2t2k)(1− 4t)−

3
2 − t2k−1(1− 4t)−1.

Also,

(3.6)
tkC(t)

1− 2tC(t)
=

1

2
tk−1(1− 4t)−

1
2 − 1

2
tk−1.

From (2.15), we have

(3.7) (1− 4t)−
1
2 =

∞∑
n=0

(n+ 1)Cnt
n.

Differentiating (3.7), we obtain

(3.8) (1− 4t)−
3
2 =

1

2

∞∑
n=0

(n+ 1)(n+ 2)Cn+1t
n.

Since tk−ik+1W (t)
1−2tC(t) = tk−ik+1W (t)(1− 4t)−

1
2 , and since the coefficients of the

power series for W (t) are all nonnegative and are dominated by those of the

power series for G(k;τ)(t), it follows (3.7) that

(3.9)

the coefficients of the power series for
tk−ik+1W (t)

1− 2tC(t)
are dominated by those

for the power series
tk−ik+1G(k;τ)(t)

1− 2tC(t)
.
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By (2.11) and (2.12),

(3.10)
tk−ik+1G(k;τ)(t)

1− 2tC(t)
=

1

2
t2k−ik

(
(1− 4t)−1 − (1− 4t)−

1
2
)
.

Since Cn ∼ 4n
√
πn

3
2

, it follows from (3.4)-(3.10) that the leading order term

as n→∞ of the coefficient Cnr
τ
n of tn in the power series for R(k;τ)(t) comes

from the coefficient of tn in the power series for (t2k−1 − 2t2k)(1− 4t)−
3
2 on

the right hand side of (3.5). Using this with (3.8), we obtain

(3.11)

Cnr
τ
n ∼

1

2
(n−2k+2)(n−2k+3)Cn−2k+2− (n−2k+1)(n−2k+2)Cn−2k+1.

Since limn→∞
Cn−1

Cn
= 1

4 , it follows from (3.11) that

(3.12) Eav(231)
n (N (k;τ)

n )2 = rτn ∼ n2
(1

2
42−2k − 41−2k

)
=

n2

42k−1
.

From (1.9), we have

(3.13) Eav(231)
n N (k;τ)

n ∼ 1

2 · 4k−1
.

Thus, it follows from (3.12) and (3.13) that

Var(N (k;τ)
n ) = o(n2).

�

4. Proof of Theorem 2

As noted in the introduction, it suffices to consider the case η = 321.

The key step to proving the theorem is the following result, whose rather

technical proof will be postponed until after the proof of Theorem 2. Recall

from the introduction that Ak;ln ⊂ Sn denotes the event that the set of k

consecutive numbers {l, l+ 1, · · · , l+ k − 1} appears in a set of consecutive

positions. For τ ∈ Sk, let Ak,τ ;ln ⊂ Sn denote the event that the set of k

consecutive numbers {l, l+ 1, · · · , l+ k − 1} appears in a set of consecutive

positions according to the pattern τ .
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Proposition 5. For n ≥ k ≥ 2 and 1 ≤ l ≤ n− k + 1,

(4.1) P av(321)
n (Ak,τ ;ln ) =


Cl−1Cn−k−l+1

Cn
, if 1 · · · k 6= τ ∈ Sav(321)

k ;

Cn−k+1

Cn
, if τ = 1 · · · k.

The proof of Theorem 2 is almost immediate from Proposition 5.

Proof of Theorem 2. Since N
(k;τ)
n =

∑n−k+1
l=1 1

Ak,τ ;ln
, Proposition 5 yields

Eav(321)
n N (k,τ)

n =

n−k+1∑
l=1

P av(321)
n (Ak,τ ;ln ) =


Cn−k+1

Cn
, if 1 · · · k 6= τ ∈ Sav(321)

k ;

(n−k+1)Cn−k+1

Cn
, if τ = 1 · · · k,

where the latter equality in the case τ 6= 1 · · · k follows from (2.2). This

gives (1.13) in the case η = 321. Since there are Ck − 1 permutations

1 · · · k 6= τ ∈ Sav(321)
k , (1.14) follows from (1.13).

Proof of Proposition 5. Fix n, k, l as in the statement of the proposition. Fix

τ ∈ Sav(321)
k . For 1 ≤ a ≤ n− k + 1, define

Ak,τ ;l,an =
{
σ ∈ Ak,τ ;ln : {l, l + 1, · · · , l + k − 1} = {σa, σa+1, · · ·σa+k−1

}
.

Then the sets {Ak,τ ;l,an }n−k+1
a=1 are disjoint and Ak,τ ;ln = ∪n−k+1

a=1 Ak,τ ;l;an .

If ν = {νi}|B|i=1 is a permutation of a finite set B ⊂ N, let νB
−1

denote the

permutation it naturally induces on S|B|; that is, νB
−1

= red(ν), where red(·)

was defined at the beginning of section 2. Conversely, if ν is a permutation

of S|B|, let νB denote the permutation it naturally induces on B.

Until further notice, consider a fixed. Let σ ∈ Ak,τ ;l;an ∩ Sav(321)
n . We

describe a procedure to contract σ to a permutation in S
av(321)
n−k+1 . Define the

permutation σ = σ(σ) of the set B = {1, · · · , l, l + k, · · · , n} by

σi =


σi, 1 ≤ i ≤ a− 1;

l, i = a;

σi+k−1, i = a+ 1, · · · , n− k + 1,

and define

ν = ν(σ) = σB
−1
.
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It follows from the construction that

(4.2) ν ∈ Sav(321)
n−k+1 and νa = l.

We concretize the above construction with an example. Let n = 9, k =

3, l = a = 4. Let σ = 213546897 ∈ A3,213;4;4
9 ∩ Sav(321)

9 . The set B is

given by B = {1, 2, 3, 4, 7, 8, 9} and σ̄ = 2134897—the cluster 546 in σ has

been contracted to 4 in σ̄. Finally, ν = ν(σ) = σ̄B
−1

= 2134675 satisfies

ν ∈ Sav(321)
7 and ν4 = 4.

Obviously the map taking σ ∈ Ak,τ ;l;an ∩ Sav(321)
n to ν(σ) is not injective.

However,

(4.3)
ν(σ) 6= ν(σ′), if σ, σ′ ∈ Ak,τ ;l;an ∩ Sav(321)

n are distinct and satisfy

σa+i = σ′a+i, i = 0, · · · , k − 1.

Conversely, let ν satisfy (4.2). We describe a procedure to extend ν to

a permutation in Ak,τ ;l;an , which may or may not belong to S
av(321)
n . Let

B = {1, · · · , l, l + k, · · · , n} as above. Define στ = στ (ν) ∈ Sn by

στi =


νBi , i = 1, · · · , a− 1;

l − 1 + τi−a+1, i = a, · · · , a+ k − 1;

νBi−k+1, i = a+ k, · · · , n.

It follows from the construction that

(4.4) στ (ν) ∈ Ak,τ ;l;an .

Also, of course, the map taking ν satisfying (4.2) to στ (ν) is injective.

As an example of the above construction, again with n = 9, k = 3, l = a =

4, let ν = 2134675. Then ν satisfies (4.2). We have B = {1, 2, 3, 4, 7, 8, 9}.

Choose, for example, τ = 213 ∈ S3. Then νB = 2134897 and στ = στ (ν) =

213546897 ∈ A3,213;4,4
9 —the 4 in νB has been expanded to the cluster 546 in

στ .

We now investigate when in fact στ (ν) ∈ Sav(321)
n , or equivalently in light

of (4.4), when στ (ν) ∈ S
av(321)
n ∩ Ak,τ ;l;an . If τ = 12 · · · k, then it is clear

that στ (ν) ∈ Sav(321)
n , for all ν satisfying (4.2). Thus, since the map taking
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σ ∈ Ak,τ ;l;an ∩Sav(321)
n to ν(σ) satisfies (4.3), and the map taking ν satisfying

(4.2) to στ (ν) is injective, it follows that

(4.5) |Sav(321)
n ∩Ak,τ ;l;an | = |{ν ∈ Sav(321)

n−k+1 : νa = l}|, τ = 1 · · · k.

Now consider any of the other τ ∈ S
av(321)
k . Since τ has a decreasing

subsequence of length 2, in order to have στ (ν) ∈ Sav(321)
n , all of the numbers

{1, · · · , l − 1} must appear among the first a− 1 positions of ν, and all the

numbers {l+1, · · ·n−k+1}must appear among the last n−a−k+1 positions

of ν. This is possible only if a = l. If indeed a = l, then στ (ν) ∈ Sav(321)
n if

and only if the first l−1 positions of ν are filled in a 321-avoiding way by the

numbers {1, · · · , l− 1} and the last n− l−k+ 1 positions of ν are filled in a

321-avoiding way by the numbers {l+ 1, · · ·n− k+ 1}. (The one remaining

position, position a, is by assumption filled by the number l.) Thus, again

because the map taking σ ∈ Ak,τ ;l;an ∩Sav(321)
n to ν(σ) satisfies (4.3), and the

map taking ν satisfying (4.2) to στ (σ) is injective, it follows that

(4.6)

|Sav(321)
n ∩Ak,τ ;l;an | =

Cl−1Cn−l−k+1, a = l;

0, a 6= l.
for 1 · · · k 6= τ ∈ Sav(321)

k .

Summing (4.5) and (4.6) over a ∈ {1, · · · , n− k + 1}, we obtain

(4.7) |Sav(321)
n ∩Ak,τ ;ln | =

Cn−k+1, τ = 1 · · · k;

Cl−1Cn−l−k+1, 1 · · · k 6= τ ∈ Sav(321)
k .

From (4.7), we conclude that (4.1) holds. �

5. Proof of Theorem 3

With just one change, we follow the construction appearing in the proof

of Proposition 5 above, from the beginning of the proof up until but not

including the paragraph containing (4.5). The one change is that wherever

S
av(321)
m appears, for some m ∈ N, it needs to be replaced by S

av(η1,··· ,ηr)
m .

(Therefore, the two examples appearing in the construction also needed to be

amended.) Thus, in the sequel, whenever we refer to equations appearing in
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the above noted construction, any appearance of S
av(321)
m in such an equation

must be changed to S
av(η1,··· ,ηr)
m . As in the proof of Proposition 5, we now

investigate when in fact στ (ν) ∈ Sav(η1,··· ,ηr)
n , or equivalently in light of (4.4),

when στ (ν) ∈ Sav(η1,··· ,ηr)
n ∩Ak,τ ;l;an . In fact, this holds for all τ ∈ Sav(η1,··· ,ηr)

k .

Indeed, since by (4.2), ν ∈ Sav(η1,··· ,ηr)
n−k+1 , and since τ ∈ Sav(η1,··· ,ηr)

k , it follows

from the definition of στ (ν) that if στ (ν) 6∈ Sav(η1,··· ,ηr)
n , then for some i ∈ [r]

and some 2 ≤ j0 ≤ k − 1, στ (ν) contains the pattern ηi and exactly j0 of

the numbers in {στa(ν), · · · , στa+k−1(ν)} = {l, · · · , l + k − 1} are used in

the construction of the pattern ηi. But then it would follow that ηi has a

nontrivial block of length j0, which contradicts the assumption that ηi is

simple.

Since for all τ ∈ Sav(η1,··· ,ηr)
k , we have στ (ν) ∈ Sav(η1,··· ,ηr)

n ∩ Ak,τ ;l;an , and

since the map taking σ ∈ Ak,τ ;l;an ∩ Sav(η1,··· ,ηr)
n to ν(σ) satisfies (4.3), and

the map taking ν satisfying (4.2) to στ (ν) is injective, it follows that

(5.1) |Sav(η1,··· ,ηr)
n ∩Ak,τ ;l;an | = |{ν ∈ Sav(η1,··· ,ηr)

n−k+1 : νa = l}|.

Summing (5.1) over a ∈ {1, · · · , n− k + 1}, we obtain

(5.2) |Sav(η1,··· ,ηr)
n ∩Ak,τ ;ln | = |Sav(η1,··· ,ηr)

n−k+1 |.

From (5.2), we obtain

(5.3) P av(η1,··· ,ηr)
n (Ak,τ ;ln ) =

|Sav(η1,··· ,ηr)
n−k+1 |

|Sav(η1,··· ,ηr)
n |

.

(We note that this construction leading to (5.3) is similar to a construction

in [1].) Since

Eav(η1,··· ,ηr)
n N (k;τ) =

n−k+1∑
l=1

P av(η1,··· ,ηr)
n (Ak,τ ;ln ),

(1.17) follows from (5.3), and then (1.18) follows by summing (1.17) over

τ ∈ Sav(η1,··· ,ηr)
k . �
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