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Abstract. We consider a Brownian searcher with diffusion coefficient

D in d-dimensions, for d = 1, 2, 3, that starts from the origin and

searches for a random target with a centered-Gaussian distribution. The

searcher is also equipped with a resetting mechanism that resets the

searcher back to the origin. We consider three different resetting mech-

anisms. One is a Poissonian reset with rate r whereby at the reset time

the searcher instantaneously jumps back to the origin, one is a periodic

reset with period T whereby at the reset time the searcher instanta-

neously jumps back to the origin, and one is a Brownian bridge reset

with period T , whereby the Brownian motion is conditioned to return to

the origin at time T . Unlike the first two search processes, this last one

has continuous paths. For d = 1 and d = 3, we obtain analytic formulas

for the expected time to locate the random target, and minimize them

over r or T , as the case may be. In one dimension, this expected time

scales as σ2

D
, which is not surprising, but in three dimensions we obtain

the anomalous scaling σ3

D
. We compare the relative efficiencies of the

three search processes. In two dimensions, we show that the expected

time scales as σ2

D
for the Poissonian reset mechanism.

1. Introduction and Statement of Results

The use of resetting in search problems is a common phenomenon in

various contexts. For example, in everyday life, one might be searching

for some target, such as a face in a crowd or a misplaced object. After

having searched unsuccessfully for a while, there is a tendency to return to

the starting point and begin the search anew. Other contexts where search

problems frequently involve resetting include animal foraging [1, 26] and

internet search algorithms.

Over the past decade or so, a variety of stochastic processes with reset-

ting have attracted much attention. See [13] for a rather comprehensive,

recent overview. Prominent among such processes is the diffusive search
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process with instantaneous resetting, which we now describe. Consider a

target located at a ∈ Rd, d ≥ 1, and consider a search process that sets off

from the origin and performs d-dimensional Brownian motion with diffusion

coefficient D > 0, which is fixed once and for all. Throughout the paper, we

suppress the dependence on D in our notation. The search process is also

equipped with an exponential clock with rate r, so that if it has failed to

locate the target by the time the clock rings, then its position is instanta-

neously reset to the origin and it continues its search anew independently

with the same rule. See, for example, [9, 11] for details of the construction of

the process. We consider r as a parameter that can be varied. In dimension

one, the target is considered “located” when the process hits the point a. In

dimensions two and higher, since the probability of a Brownian motion ever

hitting a particular point is zero, one chooses an ε0 > 0 which is fixed once

and for all, and the target is considered “located” when the process hits the

ε0-ball centered at a.

Denote the search process by X(d;r)(·) and let P
(d;r)
0 and E

(d;r)
0 denote

probabilities and expectations for the process starting from 0. Let

(1.1) τa =

{
inf{t ≥ 0 : X(1;r)(t) = a}, d = 1;

inf{t ≥ 0 : |X(d;r)(t)− a| ≤ ε0}, d ≥ 2

denote the time at which a target at a ∈ Rd is located. Throughout the

paper, we suppress the dependence on ε0 in the notation. For the above

search process, as well as for other related models, quite a number of papers

have investigated a number of phenomena, in particular, the expected time

to reach the target, E
(d;r)
0 τa, the probability of not locating the target for

large time, P
(d;r)
0 (τa > t) for large t, and the stationary probability measure

for the process. See, for example, [9, 10, 11, 12, 19, 18, 8, 24].

The resetting in the above model is of course discontinuous—at the ring of

the exponential clock, the search process instantaneously jumps back to its

initial position at the origin. In certain applications, this may be a realistic

assumption, but in many others, it is more realistic to consider a type of re-

setting for which the search process remains continuous. For example, while

the instantaneous jump model might be reasonable for an internet search, a

continuous type of resetting would be more realistic for animal foraging. A

number of very recent papers have addressed this issue, using deterministic

return processes, sometimes with constant velocity in the direction of the

reset point, and sometimes with other regimes [5], [17],[20], [6]. In these

papers, in order to make the problem more tractable mathematically, the
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target is not allowed to be discovered during the return process. These pa-

pers study, in particular, the stationary probability distribution for these

processes as well as the expected time to reach the target at a ∈ Rd.
In this paper, we introduce a continuous search process with resetting via

the Brownian bridge. The Brownian bridge with time interval T , which we

describe in more detail below, is a Brownian motion conditioned to return to

its starting point at time T . The search process, which we call the Brownian

bridge reset search process with time interval T , performs one Brownian

bridge with time interval T after the other, until it locates the target. Unlike

the continuous models in the papers cited in the above paragraph, this model

does not have a search regime with its own parameters, followed by a return

regime with its own parameters. Rather, there is one seamless process which

searches and returns with two parameters throughout; namely, the diffusion

coefficient D and the time interval T . Furthermore, unlike in the above

models, the target may be located at any time. (We note that a recent

paper [7] introduced a hybrid version of the above two search processes in

the one-dimensional case. The process in that paper is the search process

with instantaneous resetting, conditioned to return to the origin at time T .

The authors study various properties of this process on the time interval

[0, T ].)

Most of the papers in the literature deal with the expected hitting time

of a fixed target a, rather than a random target, although we note that

the early paper [10] does consider random targets. Of course, once one has

a formula for the expected hitting time of a fixed target, the formula for a

random target is obtained simply by integration. However, we are interested

in optimizing the parameters to obtain the smallest possible hitting time.

In order to understand the scaling and to obtain numerically the optimal

hitting time, one needs to express the integrated expected hitting time in a

reasonably nice closed form. In this paper we will study the expected hitting

time of a random target a ∈ Rd that is distributed according to a Gaussian

distribution centered at the origin, the point to which the search process is

reset. Our choice of centered Gaussian distributions has been dictated by a

combination of what would be interesting and natural, and by what will lend

itself to closed form formulas. (We note that for the case of instantaneous

resetting, a recent paper [23] studied the behavior of the probability of not

locating a random target for large time, where the target comes from a rather

wide family of symmetric distributions, including Gaussian distributions.)

We wish to compare the efficiency of the Brownian bridge reset search

process, with its parameters D and T , to the instantaneous reset search

process described above, with its parameters D and r, where efficiency is

measured by the infimum of the expected value of the search time, the
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infimum being taken over T and over r respectively for the two processes.

This leads us naturally to consider also a third search process, as we now

explain.

The instantaneous reset search process and the Brownian bridge reset

search process are both Markov processes, but there is one fundamental dif-

ference between them; namely the instantaneous process is time-homogeneous

while the Brownian bridge reset search process is time-inhomogeneous, with

cyclic time-inhomogeneity of period T . It seems that there is no way around

the time-inhomogeneity of the Brownian bridge reset search process. How-

ever, we can easily change the instantaneous process from time homogeneous

to time-inhomogeneous with cyclic time-inhomogeneity of period T . Indeed,

instead of using an exponential clock with rate r to determine when the

process jumps back to its starting point, we simple let it jump back to its

starting point every T units of time.

From now on, in order to fall in line with rather prevalent terminology in

the literature, we will refer to the original instantaneous reset search pro-

cess, with parameters D and r, as the Poissonian instantaneous reset search

process, and we will refer to the instantaneous reset search process described

in the previous paragraph, with parameters D and T , as the periodic instan-

taneous reset search process.

Denote the Brownian bridge reset search process by Xbb,d;T (·) and let

P bb,d;T
0 and Ebb,d;T

0 denote probabilities and expectations for process start-

ing from 0. Denote the periodic instantaneous reset search process by

Xd;T (·) and let P d;T0 and Ed;T0 denote probabilities and expectations for

the process starting from 0. We have already established notation for the

Poissonian instantaneous reset search process. Note that the only difference

in notation between the Poissonian and the periodic instantaneous reset

search processes is the use of T versus r. For the Brownian bridge reset

search process and the periodic instantaneous reset search process, we use

the same notation, τa, as was used for the Poissonian reset search process for

the time to locate the target. Thus, for these two processes, τa is defined as

in (1.1), but with Xd;r replaced by Xbb,d;T or by Xd;T . Before we state our

results, we define rigorously the two search processes Xbb,d;T (·) and Xd;T (·).
As above, fix once and for all the diffusion coefficient D > 0. Recall

that the one-dimensional Brownian bridge with bridge time interval T is the

one-dimensional Brownian motion conditioned to be at the origin at time

T . For background on this process, see for example, [16, 25]. As is well-

known [16, 25], a one-dimensional Brownian bridge with bridge time interval

T and diffusion coefficient D can be represented as
(
W (t)− t

TW (T )
)
, 0 ≤

t ≤ T , where W (·) is a one-dimensional Brownian motion with diffusion

coefficient D. The d-dimensional Brownian bridge with bridge time interval
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Figure 1. Poissonian instantaneous reset; r = 1
10 , a = 1

Figure 2. Brownian bridge reset; T = 10, a = 1

Figure 3. Periodic instantaneous reset; T = 10, a = 1

T and diffusion coefficient D is the process in Rd whose components are

independent one-dimensional Brownian bridges with bridge time interval T

and diffusion coefficient D. For T > 0, let {Bbb,d;T
n (t), 0 ≤ t ≤ T}∞n=1 be a

sequence of independent d-dimensional Brownian bridges with bridge time

interval T and diffusion coefficient D. Define the Brownian bridge reset

search process Xbb,d;T (·) by

(1.2) Xbb,d;T (t) = Bbb,d;T
n (t− nT ), t ∈ [nT, (n+ 1)T ), n = 0, 1, 2, · · · .
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Similarly, let {Bd
n(t), 0 ≤ t ≤ T}∞n=1 be a sequence of independent d-

dimensional Brownian motions with diffusion coefficient D. Define the pe-

riodic instantaneous reset search process Xd;T (·) by

(1.3) Xd;T (·) = Bd
n(t− nT ), t ∈ [nT, (n+ 1)T ), n = 0, 1, 2, · · · .

For the processes Xbb,d;T and Xd;T , we consider T , the time interval

between resets, to be a parameter that can be varied, just as we consider

the rate r of the exponential clock a parameter that can be varied for the

process Xd;r. Figures 1-3 present a simulation for each of the three search

processes with target a = 1.

Let µGauss,d
σ2 denote the centered Gaussian distribution on Rd with variance

σ2. Under the three search processes we have defined, we wish to calculate

the expected time to locate the target; namely,

(1.4)

∫
Rd
Ed;r0 τa µ

Gauss,d
σ2 (da),

∫
Rd
Ebb,d;T

0 τa µ
Gauss,d
σ2 (da)

and

∫
Rd
Ed;T0 τa µ

Gauss,d
σ2 (da).

Then we compare the efficiency of the processes by calculating the infimum

(over T or r as appropriate) of the above expected time to locate the target.

Of course, the first step is to evaluate Ed;r0 τa, E
bb,d;T
0 τa and Ed;T0 τa, for

fixed a. Expressions for Ed;r0 τa and Ed;T0 τa appear in the literature, as will

be noted in sections 2 and 4. It turns out that in dimensions d = 1 and

d = 3, closed form formulas or close to closed form formulas exist for these

expressions. We will show in this paper that the same is true for Ebb,d;T
0 τa.

A reasonably closed form formula in dimension d = 2 is known for the first

of these three expressions. As will be seen below in sections 3 and 4, in

order to get reasonably nice formulas for the second and third expressions,

one needs to have a reasonably nice formula for the probability density of

τa under standard d-dimensional Brownian motion (actually, sub-density in

dimensions d ≥ 3, since in these dimensions τa = ∞ with positive proba-

bility). One can obtain this density (or sub-density, as the case may be)

from Theorem 2.2 in [15]. Whereas the formula is nice in dimensions one

and three, it is quite unwieldy in dimension two. In light of this, we are

able to calculate in a reasonably explicit way all three expressions in (1.4)

in dimensions d = 1 and d = 3, but only the first of these three expressions

in dimension d = 2. Thus, in the sequel, these will be the expressions we

study.

The results for the above expectations for fixed a will be presented in

sections 2–4. It turns out that Ed;r0 τa grows exponentially in a, thus the

corresponding expression in (1.4) is finite for all choices of D, r and σ2.

However, each of the other two expectations grows on the order eC(D.T ) a2
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for an appropriate constant C(D,T ), and as will be seen, the corresponding

expressions in (1.4) are finite only for appropriate values of D,T and σ2.

(We note that [22] considered a Poissonian instantaneous reset process in

one-dimension in which the exponential reset clock is replaced by a spatially

dependent clock. By appropriate choice of the spatial dependence, it is

shown there that the expected value of τa can be made to grow on the order

|a|2+δ, for any δ > 0.)

As will be seen, with regard to the parameter D, the diffusion coefficient

of the search process, and the parameter σ2, the variance of the target

distribution, in dimension d = 1, all three expressions in (1.4) scale in a

standard way; namely as σ2

D . However, in dimension d = 3, we obtain the

anomalous scaling σ3

D . This, of course, leads one to wonder what scaling

occurs in dimension d = 2. We will show that in dimension d = 2, the first

expression in (1.4) has the standard scaling obtained in the one-dimensional

case. Indeed, this renders the scaling obtained in the three-dimensional case

all the more anomalous.

We now state our main results; namely, the explicit calculations of the

expressions in (1.4) and the corresponding infima over r or T , as appropriate,

for dimensions d = 1 and d = 3, and also for dimension d = 2 in the case of

the first of the three expressions in (1.4). We begin with the one-dimensional

case. Here is the result for the Poissonian instantaneous reset search process.

Theorem 1.

(1.5)

∫
R

(
E

(1;r)
0 τa

)
µGauss,1
σ2 (da) =

1

r

(
2e

rσ2

D

∫ ∞
−
√

2r
D
σ

e−
x2

2

√
2π
dx− 1

)
.

Equivalently, writing r = D
σ2 s, with s > 0,

(1.6)

∫
R

(
E

(1; D
σ2
s)

0 τa
)
µGauss,1
σ2 (da) =

σ2

D

(2es
∫∞
−
√
2s

e−
x2

2√
2π
dx− 1

s

)
.

One has

(1.7)

inf
r>0

∫
R

(
E

(1;r)
0 τa

)
µGauss,1
σ2 (da) ≈ 3.548

σ2

D
with the infimum attained at r ≈ 0.491

D

σ2
.

Here is the corresponding result for the Brownian bridge reset search

process.

Theorem 2.

(1.8)∫
R

(
Ebb,1;T

0 τa
)
µGauss,1
σ2 (da) =

{
T ( DT

DT−4σ2 )
1
2 − T + Tσ√

DT+2σ
, T > 4σ2

D ;

∞, T ≤ 4σ2

D .
.
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Equivalently, writing T = σ2

D T , with T > 0,

(1.9)∫
R

(
E

bb,1;σ
2

D
T

0 τa
)
µGauss,1
σ2 (da) =

σ2

D

(
T ( T

(T −4))
1
2 − T + T

2+
√
T

)
, T > 4;

∞, T ≤ 4.

One has

(1.10)

inf
T>0

∫
R

(
Ebb,1;T

0 τa
)
µGauss,1
σ2 (da) ≈ 4.847

σ2

D
with the infimum attained at T ≈ 10.136

σ2

D
.

And here is the corresponding result for the periodic instantaneous reset

search process.

Theorem 3.

(1.11)∫
R

(
E

(1;T )
0 τa

)
µGauss,1
σ2 (da) =

2√
2π

∫∞
0

∫ T
0

1

t
1
2

e−
σ2x2

2Dt dt

∫ T
0

1

t
3
2

e−
σ2x2
2Dt dt

e−
x2

2 dx+ T
(
2
√
D
σ

∫∞
0

1∫ T
0

x

t
3
2

e−
σ2x2
2Dt dt

e−
x2

2 dx− 1
)
, T > σ2

D ;

∞, T ≤ σ2

D .

Equivalently, writing T = σ2

D T , with T > 0,

(1.12)∫
R

(
E

(1;σ
2

D
T )

0 τa
)
µGauss,1
σ2 (da) =

σ2

D

(
2√
2π

∫∞
0

∫ T
0

1

s
1
2

e−
x2

2s ds∫ T
0

1

s
3
2

e−
x2
2s ds

e−
x2

2 dx+ 2T
∫∞
0

1∫ T
0

x

s
3
2

e−
x2
2s ds

e−
x2

2 dx− T
)
, T > 1,

∞, T ≤ 1.

One has

(1.13)

inf
T>0

∫
R

(
E

(1;T )
0 τa

)
µGauss,1
σ2 (da) ≈ 3.35

σ2

D
with the infimum attained at T ≈ 2.82

σ2

D
.

Conclusion for the one-dimensional case. From Theorems 1–3, it fol-

lows that the appropriate scaling unit for the resetting rate r in the case of

the Poissonian instantaneous reset search process is D
σ2 , and the appropriate

scaling unit for the time interval T in the case of the Brownian bridge reset

search process and the periodic instantaneous reset search process is σ2

D . In

all of these cases, the corresponding expected time to locate the target is an

appropriate constant times σ2

D . This is a natural and expected scaling.
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Comparing the two time-inhomogeneous processes, one with instanta-

neous jump resetting and one with continuous resetting via the Brownian

bridge, one sees from (1.10) and (1.13) that the optimal expected time to

locate the target is about 37 percent longer for the continuous search pro-

cess than for the one with instantaneous jumps. It is not surprising that the

Brownian bridge reset search process is the less efficient of the two, as it will

never locate the target on its way back to the origin since it is going through

territory it has already explored. From (1.7) and (1.13) one sees that the

optimal expected time to locate the target is about 6 percent longer for the

Poissonian instantaneous reset search process than for the periodic instan-

taneous reset search process. We note that in the context of a search for a

deterministic target, it was shown in [21] that the optimal expected time to

locate the target for the periodic instantaneous reset search process is always

less than for the Poissonian instantaneous search process (and also less than

for a generalization of the Poissonian search process where the jump rate

is time dependent). We see here that this advantage of the periodic case

over the Poissonian case continues to hold for a centered Gaussian target

distribution. As will be seen, the relative efficiencies of the three processes

in the three dimensional case are quite different from the one-dimensional

case, and in particular, the above-noted phenomenon no longer holds.

The expected value of the time interval between resets in the Poissonian

instantaneous reset search process is 1
r . Thus, for the optimal value of r in

(1.7), the expected value of the time interval between resets is about 2.04σ
2

D .

From (1.7) and (1.13), one sees that the optimal value of T for the Brownian

bridge reset search process is about 3.6 times as large as that for the periodic

instantaneous reset search process

We now turn to the corresponding results in three dimensions. As will be

seen in (2.3), (3.10) and (4.5), the expected hitting time τa of a point a ∈ R3

with |a| > ε0 depends on ε0, and diverges on the order 1
ε0

as ε0 → 0, for all

three of the search processes. Thus, in the case d = 3, it is appropriate to

multiply each of the expressions in (1.4) by ε0 and then consider the limit

as ε0 → 0. Here is the result for the Poissonian instantaneous reset search

process.

Theorem 4.

(1.14) lim
ε0→0

ε0

∫
R3

(
E

(3;r)
0 τa

)
µGauss,3
σ2 (da) =

2σ√
2π r

∫ ∞
0

x3e
√

r
D
σxe−

x2

2 dx.

Equivalently, writing r = D
σ2 s, with s > 0,

(1.15) lim
ε0→0

ε0

∫
R3

(
E

(3;r)
0 τa

)
µGauss,3
σ2 (da) =

σ3

D

( 2√
2πs

∫ ∞
0

x3e
√
s xe−

x2

2 dx
)
.
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One has

(1.16)
inf
r>0

lim
ε0→0

ε0

∫
R3

(
E

(3;r)
0 τa

)
µGauss,3
σ2 (da) ≈ 13.09

σ3

D
,

with the infinmum attained at r ≈ 0.738
D

σ2
.

Here is the corresponding result for the Brownian bridge reset search

process.

Theorem 5.

(1.17) lim
ε0→0

ε0

∫
R3

(
Ebb,3;T

0 τa
)
µGauss,3
σ2 (da) =

{
2T 3D2σ√

2π(DT−4σ2)2
, T > 4σ2

D ;

∞, T ≤ 4σ2

D .
.

Equivalently, writing T = σ2

D T ,

(1.18) lim
ε0→0

ε0

∫
R3

(
Ebb,3;T

0 τa
)
µGauss,3
σ2 (da) =

σ3

D

(
2T 3

√
2π(T −4)2

)
, T > 4;

∞, T ≤ 4.

One has

(1.19)

inf
T>0

lim
ε0→0

ε0

∫
R3

(
Ebb,3;T

0 τa
)
µGauss,3
σ2 (da) ≈ 21.54

σ3

D
,

with the infimum attained at T = 12.00
σ2

D
.

And here is the corresponding result for the periodic instantaneous reset

search process.

Theorem 6.

(1.20)

lim
ε0→0

ε0

∫
R3

(
E

(3;T )
0 τa

)
µGauss,3
σ2 (da) =


2
√
DT

∫∞
0

1∫ T
0

1

t
3
2

e−
σ2x2
2Dt dt

x2e−
x2

2 dx, T > σ2

D ,

∞, T ≤ σ2

D .

Equivalently, writing T = σ2

D T , with T > 0,

(1.21)

lim
ε0→0

ε0

∫
R3

(
E

(3;T )
0 τa

)
µGauss,3
σ2 (da) =


σ3

D

(
2T
∫∞
0

1∫ T
0

1

s
3
2

e−
x2
2s ds

x2e−
x2

2

)
dx, T > 1,

∞, T ≤ 1.

One has

(1.22)

inf
T>0

lim
ε0→0

ε0

∫
R3

(
E

(3;T )
0 τa

)
µGauss,3
σ2 (da) ≈ 22.775

σ3

D
,

with the infinmum attained at T ≈ 4.13
σ2

D
.



COMPARISON OF BROWNIAN JUMP AND BROWNIAN BRIDGE RESETTING 11

Conclusion for the three-dimensional case. From Theorems 4–6, it

follows that, as in the one-dimensional case, the appropriate scaling unit for

the resetting rate r in the case of the Poissonian instantaneous reset search

process is D
σ2 , and the appropriate scaling unit for the time interval T in the

case of the Brownian bridge reset search process and the periodic reset search

process is σ2

D . However, for all of these processes, the corresponding expected

time to locate the target is an appropriate constant times σ3

D , as opposed to
σ2

D in the one-dimensional case. This seems to us to be an anomalous and

surprising scaling.

Comparing the two time-inhomogeneous processes, one with instanta-

neous jump resetting and one with continuous resetting via the Brownian

bridge, one sees from (1.19) and (1.22) that the optimal expected time to

locate the target is about 6 percent longer for the one with instantaneous

jumps than for the continuous one, which is completely different than in

the one-dimensional case. Perhaps the explanation for this is that, unlike

in the one-dimensional case, in the three-dimensional case the Brownian

bridge reset search process can explore new territory on its way back to the

origin. From (1.16), (1.19) and (1.22), one sees that the Poissonian instan-

taneous reset search process is by far the most efficient one of the three.

The expected time to locate the target is about 65 percent and 74 percent

longer for the other two processes. Note that the periodic instantaneous re-

set search process fares the worst in three dimensions while faring the best

in one dimension.

In light of the anomalous scaling in three dimensions, it is natural to

wonder what occurs in two dimensions. As noted above, we are able to

handle the two-dimensional Poissonian instantaneous reset search process.

Theorem 7 below shows that the scaling in this case is the natural σ
2

D scaling.

As will be seen in the proof of Theorem 7 in section 7, E
(2;T )
0 τa, with |a| > ε0,

depends on ε0, and diverges on the order | log ε0| as ε0 → 0. Thus, in the case

d = 2, we multiply the first expression in (1.4) by 1
| log ε0| and then consider

the limit as ε0 → 0.

Theorem 7.

(1.23)

lim
ε→0

1

| log ε0|

∫
R2

(E
(2;T )
0 τa)µ

Gauss,2
σ2 (da) =

1

r

∫ ∞
0

1

K0(
√

r
D σx)

xe−
x2

2 dx,

where K0 is the modified Bessel function of the second kind of order zero.

Equivalently, writing r = D
σ2 s,

(1.24)

lim
ε→0

1

| log ε0|

∫
R2

(E
(2;T )
0 τa)µ

Gauss,2
σ2 (da) =

σ2

D

(1

s

∫ ∞
0

1

K0(
√
s x)

xe−
x2

2 dx
)
.



12 ROSS G. PINSKY

One has

(1.25) inf
r>0

lim
ε→0

1

| log ε0|

∫
R2

(E
(2;T )
0 τa)µ

Gauss,2
σ2 (da) ≈ 4.77

σ2

D
,

with the infimum attained at r ≈ 0.713 D
σ2 .

Remark. Comparing (1.7) and (1.25), one sees that for the Poissonian

instantaneous reset search process, the expected time to locate the target

is about 34 percent longer in the two-dimensional case than in the one-

dimensional case. Of course, there is no sense in making a comparison with

the three-dimensional case since the scaling there is different.

As already mentioned, the expectation of τa for fixed a, for all of the

various cases is treated in sections 2–4. These results are then used to prove

Theorems 1-7. The proofs of Theorems 1–3 are given in section 5, the proofs

of Theorems 4–6 are given in section 6 and the proof of Theorem 7 is given

in section 7.

2. Calculating the expected value of τa for fixed a in the

Poissonian instantaneous reset case

For the Poissonian instantaneous reset case, the calculation we need ap-

pears in the literature. In dimension d = 1,

(2.1) E
(1;r)
0 τa =

1

r

(
e

√
2r
D
|a| − 1

)
, a ∈ R,

and in dimensions d ≥ 2,

(2.2) E
(d;r)
0 τa =

1

r

(
(
ε0
|a|

)1−
d
2

K1− d
2
(
√

r
D ε0)

K1− d
2
(
√

r
D |a|)

− 1
)
, |a| > ε0,

where Kν denotes the modified Bessel function of the second kind of order

ν [9, 11]. Moreover, it is known that

K− 1
2
(y) = (

π

2y
)
1
2 e−y.

Thus, from (2.2) we have

(2.3) E
(3;r)
0 τa =

1

r

( |a|
ε0
e
√

r
D
(|a|−ε0) − 1

)
, |a| > ε0.

3. Calculating the expected value of τa for fixed a in the

Brownian bridge reset case

We consider the Brownian bridge reset search process for dimensions d = 1

and d = 3. For the one-dimensional case, we have the following result.
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Proposition 1.

(3.1)

Ebb,1;T
0 τa = T (e

2a2

DT − 1) + |a|e
2a2

DT

∫ T

0

e
− a2

2Dt(1− t
T

)√
2πDt(1− t

T )
dt =

T (e
2a2

DT − 1) +
2|a|e

2a2

DT

D

∫ ∞
a

e−
2x2

TD dx, a ∈ R.

Proof. By symmetry, it suffices to consider a > 0. Let W (·) be a Brownian

motion with diffusion coefficient D starting from the origin (the generator

of the process is D
2
d2

dx2
), and denote probabilities and expectations for this

process by P0 and E0. It is well-known [16, 2] that τa, the hitting time of

a ∈ R, satisfies

P0(τa < T |W (T ) = 0) = e−
2a2

DT .

It follows from the definition of the Brownian bridge and the definition of

Xbb,1;T (·) that the above equation is equivalent to

(3.2) P bb,1;T
0 (τa < T ) = e−

2a2

DT .

It is very well-known from the reflection principle [16, 25] that the hitting

time τa for W (·) has a density f(t) given by

(3.3) f(t) =
1√

2πD

a

t
3
2

e−
a2

2Dt , t > 0.

Of course, the density of W (t) is e−
a2

2Dt√
2πDt

, a ∈ R. Thus, τa, the hitting time

for W (t), 0 ≤ t ≤ T , conditioned on W (T ) = 0, or equivalently, the hitting

time under P bb,1;T
0 , has sub-density

(3.4)
f(t) 1√

2πD(T−t)
e
− a2

2D(T−t)

1√
2πDT

=
ae
− a2

2Dt(1− t
T

)√
2πD(1− t

T ) t
3
2

, 0 < t < T.

Consequently, from the definition of Xbb,1;T (·),
(3.5)

Ebb,1;T
0 (τa1τa<T ) = E0(τa1τa<T |W (T ) = 0) = a

∫ T

0

e
− a2

2Dt(1− t
T

)√
2πDt(1− t

T )
dt.

From (3.2) and the definition of Xbb,1;T (·), it follows that

(3.6) P bb,1;T
0

(
τa ∈ (nT, (n+ 1)T ]

)
= (1− e−

2a2

DT )ne−
2a2

DT .



14 ROSS G. PINSKY

Also, from (3.2), (3.5) and the definition of Xbb,1;T (·) it follows that

(3.7)

Ebb,1;T
0

(
τa|τa ∈ (nT, (n+ 1)T ]

)
= nT + Ebb,1;T

0 (τa|τa < T ) =

nT +
Ebb,1;T

0 (τa1τa<T )

P bb,1;T
0 (τa < T )

= nT + ae
2a2

DT

∫ T

0

e
− a2

2Dt(1− t
T

)√
2πDt(1− t

T )
dt.

Now (3.6) and (3.7) yield

Ebb,1;T
0 τa =

∞∑
n=0

Ebb,1;T
0

(
τa|τa ∈ (nT, (n+ 1)T ]

)
P bb,1;T
0

(
τa ∈ (nT, (n+ 1)T ]

)
=

∞∑
n=0

(
nT + ae

2a2

DT

∫ T

0

e
− a2

2Dt(1− t
T

)√
2πDt(1− t

T )
dt
)

(1− e−
2a2

DT )ne−
2a2

DT =

T (e
2a2

DT − 1) + ae
2a2

DT

∫ T

0

e
− a2

2Dt(1− t
T

)√
2πDt(1− t

T )
dt,

which gives the first equality in (3.1). For the second equality in (3.1), we

need to prove that

(3.8)

∫ T

0

e
− a2

2Dt(1− t
T

)√
2πDt(1− t

T )
dt =

2

D

∫ ∞
a

e−
2x2

TD dx.

Let G(a) =
∫ T
0

e
− a2

2Dt(1− t
T

)√
2πDt(1− t

T
)
dt. Then G′(a) = − a

D
√
2πD

∫ T
0

e
− a2

2Dt(1− t
T

)

(t(1− t
T
))

3
2
dt. The

integral appearing in G′(a) is evaluated in (3.23) in the course of the proof

of Theorem 2. This gives

(3.9) G′(a) = − a

D
√

2πD

2
√

2πD

a
e−

2a2

TD = − 2

D
e−

2a2

TD .

Since lima→∞G(a) = 0, we have

G(a) = −
∫ ∞
a

G′(x)dx =
2

D

∫ ∞
a

e−
2x2

TD dx,

proving (3.8). �

For the three-dimensional case, we have the following result, giving upper

and lower bounds which depend on ε0.
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Proposition 2.

(3.10)

Ebb,3;T
0 τa ≤ T

( |a|+ ε0
|a| − ε0

|a|
2ε0

e
2(|a|+ε0)

2

DT − 1
)

+ T
|a|+ ε0

2(|a| − ε0)
e

8|a|ε0
DT , |a| > ε0;

Ebb,3;T
0 τa ≥ T

( |a|
2ε0

e
2(|a|−ε0)

2

DT − 1
)

+ T
|a| − ε0

2(|a|+ ε0)
e−

8|a|ε0
DT , |a| > ε0.

Also,

(3.11) sup
ε0,a:0<ε0<|a|≤1

ε0E
bb,3;T
0 τa <∞.

Remark. We note that (3.11) is a technical result that will be needed

because the right hand side of the first line in (3.10) is unbounded as |a| → ε0.

Proof. Let W (t) be a three-dimensional Brownian motion with diffusion

coefficient D and denote probabilities for the process starting from b ∈ R3

by Pb. Abusing notation, let P0(τa = t) denote the density of the distribution

of τa under P0; we will make similar abuses of notation for other densities in

the sequel. Of course by isotropy, P0(τa = t) = Pa(τ0 = t), and this latter

density can be found in [15] in the case that the diffusion coefficient D in

equal to one. After appropriate scaling to take into account D, this gives

(3.12) P0(τa = t) =
ε0
|a|
|a| − ε0√
2πD t

3
2

e−
(|a|−ε0)

2

2Dt , |a| > ε0.

In the sequel, in all formulas involving a and ε0, it will be tacitly assumed

that |a| > ε0. From (3.12), the strong Markov property and the definition

of Xbb,3,T (·), we have

(3.13)

P bb,3;T
0 (τa = t) =

P0(τa = t)
∫
ν∈R3:|ν|=1 Pa+ε0ν(W (T − t) = 0)µa,t(dν)

P0(W (T ) = 0)
,

where µa,t is the distribution under P0 of W (τa), conditioned on {τa = t}.
Of course,

(3.14) Pb(W (t) = a) =
e−
|b−a|2
2Dt

(2πDt)
3
2

, a, b ∈ R3.

Thus, Pa+ε0ν(W (T − t) = 0) attains its maximum and minimum over {ν ∈
R3 : |ν| = 1} at ν = − a

|a| and ν = a
|a| respectively, giving

(3.15)
e
− (|a|+ε0)

2

2D(T−t)

(2πD(T − t))
3
2

≤ Pa+ε0ν(W (T − t) = 0) ≤ e
− (|a|−ε0)

2

2D(T−t)

(2πD(T − t))
3
2

, |ν| = 1.
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From (3.12)-(3.15), we conclude that

(3.16)

ε0
|a|
|a| − ε0√

2πD

e
− (|a|+ε0)

2

2D(T−t) e−
(|a|−ε0)

2

2Dt

(t(1− t
T ))

3
2

≤ P bb,3;T
0 (τa = t) ≤ ε0

|a|
|a| − ε0√

2πD

e
− (|a|−ε0)

2

2Dt(1− t
T

)

(t(1− t
T ))

3
2

.

We will use the lower bound in (3.16) to prove (3.11), however for the proof

of the lower bound in (3.10), we will use the following lower bound, which

is obtained by replacing the term |a| − ε in the exponent on the left hand

side of (3.16) by |a|+ ε:

(3.17)
ε0
|a|
|a| − ε0√

2πD

e
− (|a|+ε0)

2

2Dt(1− t
T

)

(t(1− t
T ))

3
2

≤ P bb,3;T
0 (τa = t).

From (3.2) and (3.4), it follows that

(3.18)
1√

2πD

∫ T

0
b
e
− b2

2Dt(1− t
T

)

(1− t
T )

1
2 t

3
2

dt = e−
2b2

TD , b > 0.

Making the change of variables s = T − t gives

(3.19)

∫ T

0

e
− b2

2Dt(1− t
T

)

(1− t
T )

1
2 t

3
2

dt =

∫ T

0

e
− b2

2D(T−s) s
T

( sT )
1
2 (T − s)

3
2

ds =
1

T

∫ T

0

e
− b2

2Ds(1− s
T

)

s
1
2 (1− s

T )
3
2

ds.

From (3.18) and (3.19), we have

(3.20)
1√

2πD

∫ T

0
b
e
− b2

2Dt(1− t
T

)

t
1
2 (1− t

T )
3
2

dt = Te−
2b2

TD .

Now (3.16) and (3.20) give

(3.21)

Ebb,3;T
0 τa1τa≤T ≤

ε0
|a|
|a| − ε0√

2πD

∫ T

0

e
− (|a|−ε0)

2

2Dt(1− t
T

)

t
1
2 (1− t

T )
3
2

dt =
ε0
|a|
Te−

2(|a|−ε0)
2

TD ;

Ebb,3;T
0 τa1τa≤T ≥

ε0
|a|
|a| − ε0√

2πD

∫ T

0

e
− (|a|+ε0)

2

2Dt(1− t
T

)

t
1
2 (1− t

T )
3
2

dt =
ε0
|a|
|a| − ε0
|a|+ ε0

Te−
2(|a|+ε0)

2

TD .

From (3.16) and (3.17), we have

(3.22)

ε0
|a|
|a| − ε0√

2πD

∫ T

0

e
− (|a|+ε0)

2

2Dt(1− t
T

)

(t(1− t
T ))

3
2

dt ≤ P bb,3;T
0 (τa ≤ T ) ≤ ε0

|a|
|a| − ε0√

2πD

∫ T

0

e
− (|a|−ε0)

2

2Dt(1− t
T

)

(t(1− t
T ))

3
2

dt.
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We now show that

(3.23)

∫ T

0

e
− b2

2Dt(1− t
T

)

(t(1− t
T ))

3
2

dt =
2
√

2πD

b
e−

2b2

TD , b > 0.

Indeed, (3.23) follows from the following calculation, in which we use (3.18)

for the first equality and (3.20) for the last inequality.

√
2πD

b
e−

2b2

TD =

∫ T

0

e
− b2

2Dt(1− t
T

)

(1− t
T )

1
2 t

3
2

dt =

∫ T

0

e
− b2

2Dt(1− t
T

)

(t(1− t
T ))

3
2

(1− t

T
)dt =

∫ T

0

e
− b2

2Dt(1− t
T

)

(t(1− t
T ))

3
2

dt− 1

T

∫ T

0

e
− b2

2Dt(1− t
T

)

t
1
2 (1− t

T )
3
2

dt =

∫ T

0

e
− b2

2Dt(1− t
T

)

(t(1− t
T ))

3
2

dt−
√

2πD

b
e−

2b2

TD .

From (3.22) and (3.23), we have

(3.24)
2ε0
|a|
|a| − ε0
|a|+ ε0

e−
2(|a|+ε0)

2

TD ≤ P bb,3;T
0 (τa ≤ T ) ≤ 2ε0

|a|
e−

2(|a|−ε0)
2

TD .

We now write

(3.25)

Ebb,3;T
0 τa =

∞∑
n=0

Ebb,3;T
0 (τa|τa ∈ (nT, (n+ 1)T ])P bb,3;T

0 (τa ∈ (nT, (n+ 1)T ]).

From the definition of Xbb,3;T , we have

(3.26)

Ebb,3;T
0 (τa|τa ∈ (nT, (n+1)T ]) = nT+Ebb,3;T

0 (τa|τa ≤ T ) = nT+
Ebb,3;T

0 τa1τa≤T

P bb,3;T
0 (τa ≤ T )

and

(3.27) P bb,3;T
0 (τa ∈ (nT, (n+ 1)T ]) =

(
P bb,3;T
0 (τa > T )

)n
P bb,3;T
0 (τa ≤ T ).

Since for q ∈ (0, 1), one has
∑∞

n=0 n(1− q)nq = 1−q
q , which is decreasing in

q, we have from (3.24)

(3.28)
∞∑
n=0

n
(
P bb,3;T
0 (τa > T )

)n
P bb,3;T
0 (τ ≤ T ) ≤ |a|(|a|+ ε0)

2ε0(|a| − ε0)
e

2(|a|+ε0)
2

TD − 1;

∞∑
n=0

n
(
P bb,3;T
0 (τa > T )

)n
P bb,3;T
0 (τ ≤ T ) ≥ |a|

2ε0
e

2(|a|−ε0)
2

TD − 1.

Now (3.10) follows from (3.25)-(3.28) along with (3.24) and (3.21).

We now prove (3.11). From the upper bound in (3.10), it suffices to

consider the case that |a| − ε0 is small; indeed, |a| − ε0 being small is the
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only thing that can possibly prevent the left hand side of (3.11) from being

finite. Thus we can and will assume that

(3.29) (|a| − ε0)2 ≤
T

4
.

(Of course, since from (3.11) we are always assuming that |a| ≤ 1, the

assumption (3.29) holds automatically if T ≥ 4.) Let

p(a) = P bb,3;T
0 (τa ≤ T ).

From the definition of the Brownian bridge reset search process,

P bb,3;T
0

(
(M − 1)T ≤ τa ≤MT

)
= (1− p(a))M−1p(a), M ∈ N.

Thus,

(3.30)

Ebb,3;T
0 τa ≤

∞∑
M=1

MTP bb,3;T
0

(
(M − 1)T ≤ τa ≤MT

)
=

Tp(a)
∞∑

M=1

M(1− p(a))M−1 =
T

p(a)
.

We now obtain a lower bound on p(a). Using the lower bound in (3.16)

for the second inequality below, we have

(3.31)

p(a) = P bb,3;T
0 (τa ≤ T ) > P bb,3;T

0 (|a− ε0|2 ≤ τa ≤
T

2
) ≥

∫ T
2

|a−ε0|2

ε0
|a|
|a| − ε0√

2πD

e
− (|a|+ε0)

2

2D(T−t) e−
(|a|−ε0)

2

2Dt

(t(1− t
T ))

3
2

dt ≥

Cε0

∫ T
2

(|a|−ε0)2

|a| − ε0
t
3
2

dt = 2Cε0
(
1−
√

2(|a| − ε0)√
T

)
≥ 2Cε0(1−

√
2

2
),

for |a| ≤ 1 and a and ε0 satisfying (3.29), where C depends only on T and D.

From (3.30) and (3.31), we conclude that Ebb,3;T
0 τa ≤ T

2Cε0(1−
√
2
2
)
, for a and

ε0 as in (3.31). This completes the proof of (3.11).

�

4. Calculating the expected value of τa for fixed a in the

periodic instantaneous reset case

We consider the periodic instantaneous reset process for dimensions d = 1

and d = 3. The formulas in this section (sometimes in slightly different

forms) appear, for example, in [4] (for one and three dimensions), [3] (for

one dimension) and [14] (for all dimensions). For completeness, we supply

the short proofs. In the one-dimensional case, we have the following result.
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Proposition 3.

(4.1) E1;T
0 τa = T

(( ∫ T

0

|a|√
2πD

1

t
3
2

e−
a2

2Dtdt
)−1− 1

)
+

∫ T
0

1

t
1
2
e−

a2

2Dtdt∫ T
0

1

t
3
2
e−

a2

2Dtdt
, a 6= 0.

Proof. By symmetry, it suffices to consider a > 0. From the definition of the

process X1;T , the probability of the event {τa < T} is the same as it is for

a Brownian motion with diffusion coefficient D. Thus, from (3.3), we have

(4.2) P 1;T
0 (τa < T ) =

∫ T

0

a√
2πD

1

t
3
2

e−
a2

2Dtdt.

From (4.2) and the definition of X1;T , we have

(4.3)

P 1;T
0 (τa ∈ (nT, (n+1)T ]) =

(
1−
∫ T

0

a√
2πD

1

t
3
2

e−
a2

2Dtdt
)n ∫ T

0

a√
2πD

1

t
3
2

e−
a2

2Dtdt,

and

(4.4) E1;T
0 (τa|τa ∈ (nT, (n+ 1)T ]) = nT +

∫ T
0

1

t
1
2
e−

a2

2Dtdt∫ T
0

1

t
3
2
e−

a2

2Dtdt
.

Writing

E1;T
0 τa =

∞∑
n=0

E1;T
0

(
τa|τa ∈ (nT, (n+ 1)T ]

)
P 1;T
0

(
τa ∈ (nT, (n+ 1)T ]

)
,

the theorem follows from (4.3) and (4.4).

�

In the three-dimensional case, we have the following result.

Proposition 4.

(4.5)

E3;T
0 τa = T

(( ∫ T

0

ε0(|a| − ε)
|a|
√

2πD

1

t
3
2

e−
(|a|−ε0)

2

2Dt dt
)−1−1

)
+

∫ T
0

1

t
1
2
e−

(|a|−ε0)
2

2Dt dt∫ T
0

1

t
3
2
e−

(|a|−ε0)2
2Dt dt

, |a| > ε0.

Proof. From the definition of the process X3;T , the probability of the event

{τa < T} is the same as it is for a three-dimensional Brownian motion with

diffusion coefficient D. Thus, from (3.12), we have

(4.6) P 1;T
0 (τa < T ) =

∫ T

0

ε0(|a| − ε0)
|a|
√

2πD

1

t
3
2

e−
(|a|−ε0)

2

2Dt dt.

The proof of the proposition now follows exactly as the proof of Proposition

3, but with (4.6) replacing (4.2). �
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5. Proofs of Theorems 1-3

Proof of Theorem 1. From (2.1), we have

(5.1)
∫
R

(
E

(1;r)
0 τa

)
µGauss,1
σ2 (da) = 2

∫ ∞
0

e

√
2r
D
a − 1

r

e−
a2

2σ2

√
2πσ

da.

Also,

(5.2)∫ ∞
0

e

√
2r
D
a
e−

a2

2σ2

√
2πσ

da = e
rσ2

D

∫ ∞
0

e−
(a−
√

2r
D
σ2)2

2σ2

√
2πσ

da = e
rσ2

D

∫ ∞
−
√

2r
D
σ

e−
x2

2

√
2π
dx.

We obtain (1.5) from (5.1) and (5.2). A change of variables in (1.5) yields

(1.6). Finally, (1.7) was obtained from (1.6) using the Desmos graphing

calculator. �

Proof of Theorem 2. From (3.1), we have

(5.3)

∫
R

(
Ebb,1;T

0 τa
)
µGauss,1
σ2 (da) = 2T

∫ ∞
0

(e
2a2

DT − 1)
e−

a2

2σ2

√
2πσ

da+

2

∫ ∞
0

ae
2a2

DT

(∫ T

0

e
− a2

2Dt(1− t
T

)√
2πDt(1− t

T )
dt
) e− a2

2σ2

√
2πσ

da.

The first integral on the right hand side of (5.3) is infinite if T ≤ 4σ2

D . From

now on, we assume that T > 4σ2

D . We have

2

∫ ∞
0

e
2a2

DT e−
a2

2σ2 da = 2

∫ ∞
0

e−
1
2
DT−4σ2

DTσ2
a2da =

√
2π

DTσ2

DT − 4σ2
.

Thus, the first term on the right hand side of (5.3) satisfies

(5.4) 2T

∫ ∞
0

(e
2a2

DT − 1)
e−

a2

2σ2

√
2πσ

da = T
( DT

DT − 4σ2
) 1

2 − T.

We now turn to the second term on the right hand side of (5.3). We have

(5.5)

∫ ∞
0

ae
2a2

DT e
− a2

2Dt(1− t
T

) e−
a2

2σ2 da =

∫ ∞
0

ae
− 1

2
T2σ2+t(T−t)(DT−4σ2)

DtT (T−t)σ2
a2
da =

DtT (T − t)σ2

T 2σ2 + t(T − t)(DT − 4σ2)
.
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Using (5.5), we can write the second term on the right hand side of (5.3) as

(5.6)

2

∫ ∞
0

ae
2a2

DT

(∫ T

0

e
− a2

2Dt(1− t
T

)√
2πDt(1− t

T )
dt
) e− a2

2σ2

√
2πσ

da =

T
3
2σ

π

∫ T

0

√
Dt(T − t)

T 2σ2 + t(T − t)(DT − 4σ2)
dt =

2T
3
2σ

π

∫ T
2

0

√
Dt(T − t)

T 2σ2 + t(T − t)(DT − 4σ2)
dt.

Make the substitution x =
√
t(T − t). Then t = 1

2

(
T − (T 2 − 4x2)

1
2

)
and

dt = 2x(T 2 − 4x2)−
1
2dx. We obtain

(5.7)∫ T
2

0

√
Dt(T − t)

T 2σ2 + t(T − t)(DT − 4σ2)
dt = 2

√
D

∫ T
2

0

1

(T 2 − 4x2)
1
2

( x2

T 2σ2 + x2(DT − 4σ2)

)
dx.

Now make the substitution x = T
2 sin θ. Then dx = T

2 cos θdθ. We obtain

(5.8)∫ T
2

0

1

(T 2 − 4x2)
1
2

( x2

T 2σ2 + x2(DT − 4σ2)

)
dx =

1

8

∫ π
2

0

sin2 θ

σ2 + DT−4σ2

4 sin2 θ
dθ.

We write

sin2 θ

σ2 + DT−4σ2

4 sin2 θ
=

4

DT − 4σ2
sin2 θ

sin2 θ + 4σ2

DT−4σ2

=

4

DT − 4σ2
− 16σ2

(DT − 4σ2)2
1

sin2 θ + 4σ2

DT−4σ2

.

Thus,

(5.9)∫ π
2

0

sin2 θ

σ2 + DT−4σ2

4 sin2 θ
dθ =

2π

DT − 4σ2
− 16σ2

(DT − 4σ2)2

∫ π
2

0

1

sin2 θ + 4σ2

DT−4σ2

dθ.

Making the substitution tan θ = s, in which case sin θ = s√
1+s2

and dθ =
1

1+s2
ds, we obtain for any A > 0,

(5.10)∫ π
2

0

1

sin2 θ +A
dθ =

∫ ∞
0

1

A+ (A+ 1)s2
ds =

1

A+ 1

√
A+ 1

A
arctan

√
A+ 1

A
s
∣∣∣∞
0

=

π

2
√
A(A+ 1)

.
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From (5.10), we have

(5.11)

∫ π
2

0

1

sin2 θ + 4σ2

DT−4σ2

dθ =
π

2

( 4σ2

DT − 4σ2
( 4σ2

DT − 4σ2
+ 1
))− 1

2
=

π(DT − 4σ2)

4σ
√
DT

.

From (5.6)-(5.9) and (5.11), we obtain

(5.12)

2

∫ ∞
0

ae
2a2

DT

(∫ T

0

e
− a2

2Dt(1− t
T

)√
2πDt(1− t

T )
dt
) e− a2

2σ2

√
2πσ

da =

(
2T

3
2σ

π
)(2
√
D)(

1

8
)
( 2π

DT − 4σ2
− 16σ2

(DT − 4σ2)2
π(DT − 4σ2)

4σ
√
DT

)
=

T
3
2σ
√
D

2π

2π
√
DT − 4σπ

(DT − 4σ2)
√
DT

=
T

3
2σ
√
D

2π

2π(
√
DT − 2σ)

(DT − 4σ2)
√
DT

=
Tσ√

DT + 2σ
.

Now (1.8) follows from (5.3), (5.4) and (5.12). A change of variables in

(1.8) yields (1.9). Finally, (1.10) was obtained from (1.9) using the Desmos

graphing calculator. �

Proof of Theorem 3. We begin by showing that the left hand side of (1.11)

is in fact finite if and only if T > σ2

D . We leave it to the reader to show that

the second term on the right hand side of (4.1) is bounded as a→∞. (Make

the change of variables, s = t
a2

, then let x = 1
a2

and apply l’Hôpital’s rule

appropriately.) Thus, this term is integrable against any Gaussian measure.

Now consider the expression (
∫ T
0

a√
2πD

1

t
3
2
e−

a2

2Dtdt
)−1

in the first term on the

right hand side of (4.1). It is known from the reflection principle [16, 25]

that

(5.13)

∫ T

0

a√
2πD

1

t
3
2

e−
a2

2Dtdt =

∫ ∞
a

e−
x2

2DT

√
2πDT

dx = 2

∫ ∞
a√
DT

e−
y2

2

√
2π
dy.

It is well-known and can be proved by l’Hôpital’s rule that
∫∞
x e−

y2

2 dy ∼
1
xe
−x

2

2 as x→∞. From this it follows that

(

∫ T

0

a√
2πD

1

t
3
2

e−
a2

2Dtdt
)−1 ∼ √2π a

2
√
DT

e
a2

2DT , as a→∞.

From these facts, it follows that (1.11) is finite if and only if T > σ2

D .

From now on, we assume that T > σ2

D . From (4.1), in order to prove

the theorem, we need to evaluate
∫∞
0

( ∫ T
0

a√
2πD

1

t
3
2
e−

a2

2Dtdt
)−1 2√

2π σ
e−

a2

2σ2 da
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and
∫∞
0

(∫ T
0

1

t
1
2

e−
a2

2Dt dt

∫ T
0

1

t
3
2

e−
a2
2Dt dt

)
2√
2π σ

e−
a2

2σ2 da. Consider the latter term. Making the

substitutions a = σx and T = σ2

D T , we have

(5.14)∫ ∞
0

(∫ T0 1

t
1
2
e−

a2

2Dtdt∫ T
0

1

t
3
2
e−

a2

2Dtdt

) 2√
2π σ

e−
a2

2σ2 da =

∫ ∞
0

∫ σ2

D
T

0
1

t
1
2
e−

σ2x2

2Dt dt∫ σ2

D
T

0
1

t
3
2
e−

σ2x2

2Dt dt

2√
2π
e−

x2

2 dx.

Making the substitution t = σ2

D s, we have

(5.15)∫ ∞
0

∫ σ2

D
T

0
1

t
1
2
e−

σ2x2

2Dt dt∫ σ2

D
T

0
1

t
3
2
e−

σ2x2

2Dt dt

2√
2π
e−

x2

2 dx =
σ2

D

( 2√
2π

∫ ∞
0

∫ T
0

1

s
1
2
e−

x2

2s ds∫ T
0

1

s
3
2
e−

x2

2s ds
e−

x2

2 dx
)
.

Making the same series of substitutions in the other integral that we need

to evaluate, we obtain

(5.16)∫ ∞
0

( ∫ T

0

a√
2πD

1

t
3
2

e−
a2

2Dtdt
)−1 2√

2π σ
e−

a2

2σ2 da = 2

∫ ∞
0

1∫ T
0

x

s
3
2
e−

x2

2s ds
e−

x2

2 dx.

Now (1.12) follows from (4.1), (5.15) and (5.16). Making the substitution

s = Dt
σ2 in (1.12) gives (1.11). We obtained (1.13) from (1.12) using the

Desmos graphing calculator.

�

6. Proofs of Theorems 4-6

Proof of Theorem 4. From (2.3) and the fact that E
(3;r)
0 τa = 0, for |a| ≤ ε0,

we have

(6.1)

ε0

∫
R3

(
E

(3;r)
0 τa

)
µGauss,3
σ2 (da) =

1

r

∫
a∈R3:|a|>ε0

(
|a|e
√

r
D
(|a|−ε0)−ε0)

e−
|a|2

2σ2

(2πσ2)
3
2

da.

Thus, the monotone convergence theorem gives

(6.2) lim
ε0→0

ε0

∫
R3

(
E

(3;r)
0 τa

)
µGauss,3
σ2 (da) =

1

r

∫
R3

|a|e
√

r
D
|a| e

− |a|
2

2σ2

(2πσ2)
3
2

da.
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Letting R = |a| and then letting x = R
σ , we have

(6.3)

1

r

∫
R3

|a|e
√

r
D
|a| e

− |a|
2

2σ2

(2πσ2)
3
2

da =
1

r

∫ ∞
0

Re
√

r
D
R e−

R2

2σ2

(2πσ2)
3
2

4πR2dR =

2σ√
2π r

∫ ∞
0

x3e
√

r
D
σxe−

x2

2 dx.

Letting s = σ2 rD , we obtain

(6.4)
2σ√
2π r

∫ ∞
0

x3e
√

r
D
σxe−

x2

2 dx =
σ3

D

( 2√
2πs

∫ ∞
0

x3e
√
sxe−

x2

2 dx
)
.

Now (1.14) follows from (6.2) and (6.3), and (1.15) follows from (6.2)-(6.4).

Finally, (1.16) follows from (1.15) using the Desmos graphing calculator. �

Proof of Theorem 5. From the monotone convergence theorem, it follows

that limε0→0

∫
{a∈R3:|a|>ε0} e

2(|a|−ε0)
2

DT µGauss,3
σ2 (da) = ∞, if T ≤ 4σ2

D . Thus,

from the second line of (3.10), it follows that

(6.5) lim
ε0→0

ε0

∫
R3

(
Ebb,3;T

0 τa
)
µGauss,3
σ2 (da) =∞, if T ≤ 4σ2

D
.

From now on, we assume that T > 4σ2

D . From (3.10) and (3.11), we have

(6.6) lim
ε0→0

ε0E
bb,3;T
0 τa =

T

2
|a|e

2|a|2
TD , for all 0 6= a ∈ R3.

From (6.6) along with the first line in (3.10) and (3.11), it follows from the

dominated convergence theorem that

(6.7) lim
ε0→0

ε0

∫
R3

(
Ebb,3;T

0 τa
)
µGauss,3
σ2 (da) =

T

2

∫
R3

|a|e
2|a|2
TD

e−
|a|2

2σ2

(2πσ2)
3
2

da.

We have 2|a|2
TD −

|a|2
2σ2 = −(TD−4σ

2)
TDσ2

|a|2
2 . Thus,

(6.8)∫
R3

|a|e
2|a|2
TD e−

|a|2

2σ2 da =

∫
R3

|a|2e−
|a|
2
(TD−4σ2

TDσ2
)da =

∫ ∞
0

Re−
R2

2
(TD−4σ2

TDσ2
)4πR2dR.

Integrating by parts yields

(6.9)

∫ ∞
0

Re−
R2

2
(TD−4σ2

TDσ2
)4πR2dR = 8π(

TDσ2

TD − 4σ2
)2, T >

4σ2

D
.

Now (1.17) follows from (6.5)-(6.9), (1.18) follows immediately from (1.17)

and (1.19) is obtained using the Desmos graphing calculator. �

Proof of Theorem 6. Considering (4.5), a proof similar to that given for the

corresponding result in the one-dimensional case shows that the left hand

side of (1.20) is finite if and only if T > σ2

D .
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From now on, we assume that T > σ2

D . Using the dominated convergence

theorem for the first term on the right hand side of (4.5) and the bounded

convergence theorem for the second term there, and recalling that E3;T
0 τa =

0, for |a| ≤ ε0, we obtain

(6.10)

lim
ε0→0

ε0

∫
R3

(
E

(3;T )
0 τa

)
µGauss,3
σ2 (da) = T

∫
R3

1∫ T
0

1√
2πD

1

t
3
2
e−
|a|2
2Dt dt

e−
|a|2

2σ2

(2πσ2)
3
2

da.

We have

(6.11)∫
R3

1∫ T
0

1√
2πD

1

t
3
2
e−
|a|2
2Dt dt

e−
|a|2

2σ2

(2πσ2)
3
2

da =

∫ ∞
0

1∫ T
0

1√
2πD

1

t
3
2
e−

R2

2Dtdt

e−
R2

2σ2

(2πσ2)
3
2

4πR2dR.

Making the substitutions R = xσ and T = σ2

D T , we have

(6.12)∫ ∞
0

1∫ T
0

1√
2πD

1

t
3
2
e−

R2

2Dtdt

e−
R2

2σ2

(2πσ2)
3
2

4πR2dR =

∫ ∞
0

1∫ σ2

D
T

0
1√
2πD

1

t
3
2
e−

σ2x2

2Dt dt

e−
x2

2

(2π)
3
2

4πx2dx.

Making the substitution t = σ2

D s, we have

(6.13)∫ ∞
0

1∫ σ2

D
T

0
1√
2πD

1

t
3
2
e−

σ2x2

2Dt dt

e−
x2

2

(2π)
3
2

4πx2dx = 2σ

∫ ∞
0

1∫ T
0

1

s
3
2
e−

x2

2s ds
x2e−

x2

2 dx.

From (6.10)-(6.13), we obtain (1.21). Making the substitution s = Dt
σ2 in

(1.21) gives (1.20). We obtained (1.22) from (1.21) using the Desmos graphic

calculator.

�

7. Proof of Theorem 7

From (2.2), we have

(7.1) E2;r
0 τa =

1

r

(K0(
√

r
D ε0)

K0(
√

r
D |a|)

− 1
)
, |a| > ε0.

One has the asymptotic formula K0(x) ∼ − log x
2 as x→ 0 [27, p.80]. Thus,

(7.2) lim
ε0→0

1

| log ε0|
E2;r

0 τa =
1

rK0(
√

r
D |a|)

.

From the above asymptotic behavior, 1
K0(
√

r
D
|a|)

is integrable in a neigh-

borhood of 0 ∈ R. Also, K0(x) decays exponentially as x → ∞ [27, p.202].
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Therefore, 1
K0(
√

r
D
|a|)

is integrable against any Gaussian density. Using these

facts with (7.2) and the dominated convergence theorem, and recalling that

E2;r
0 τa = 0, for |a| ≤ ε0, we obtain

(7.3) lim
ε→0

1

| log ε0|

∫
R2

(E2;rτa)µ
Gauss,2
σ2 (da) =

1

r

∫
R2

1

K0(
√

r
D |a|)

e−
|a|2

2σ2

2πσ2
da.

We have

(7.4)

∫
R2

1

K0(
√

r
D |a|)

e−
|a|2

2σ2

2πσ2
da =

∫ ∞
0

1

K0(
√

r
D R)

e−
R2

2σ2

σ2
RdR.

Making the change of variables, R = σx, we have

(7.5)

∫ ∞
0

1

K0(
√

r
D R)

e−
R2

2σ2

σ2
RdR =

∫ ∞
0

1

K0(
√

r
D σx)

xe−
x2

2 dx.

Now (1.23) follows from (7.3)–(7.5). One obtains (1.24) from (1.23) by

substituting r = D
σ2 s. We obtained (1.25) from (1.24), using the Desmos

graphing calculator and using the representation K0(x) =
∫∞
0 e−x cosh tdt

[27, p.181]. �
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