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Abstract. We calculate the large deviations for the length of the longest

alternating subsequence and for the length of the longest increasing sub-

sequence in a uniformly random permutation that avoids a pattern of

length three. We treat all six patterns in the case of alternating sub-

sequences. In the case of increasing subsequences, we treat two of the

three patterns for which a classical large deviations result is possible.

The same rate function appears in all six cases for alternating sub-

sequences. This rate function is in fact the rate function for the large

deviations of the sum of IID symmetric Bernoulli random variables. The

same rate function appears in the two cases we treat for increasing sub-

sequences. This rate function is twice the rate function for alternating

subsequences.

1. Introduction and Statement of Results

The problem of analyzing the distribution of the length, Ln, of the longest

increasing subsequence in a uniformly random permutation from Sn, the set

of permutations of [n] := {1, · · · , n}, has a long and distinguished history;

see [1] and references therein, and see [9]. In particular, the work of Logan

and Shepp [8] together with that of Vershik and Kerov [13] show that ELn ∼
2n

1
2 as n → ∞. This was followed over twenty years later by the profound

work of Baik, Deift and Johansson [2], who proved that

lim
n→∞

P (
Ln − 2n

1
2

n
1
6

≤ x) = F (x),
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where F is the Tracy-Widom distribution. A large deviations result for the

lower tail probabilities P (Ln
n

1
2
≤ x), for x < 2, was given in [5], while for the

upper tail probabilities P (Ln
n

1
2
≥ x), for x > 2, one was given in [10]. See

also references therein.

Now consider the length of the longest alternating subsequence in a uni-

formly random permutation from Sn. An alternating subsequence of length

k in a permutation σ = σ1 · · ·σn ∈ Sn is a subsequence of the form σi1 >

σi2 < σi3 > σi4 · · ·σik or σi1 < σi2 > σi3 < σi4 · · ·σik , where 1 ≤ i1 <

· · · < ik ≤ n. Call the first type an initially descending alternating sub-

sequence and call the second type an initially ascending alternating subse-

quence. Of course, for asymptotic results concerning the longest alternating

subsequence, it doesn’t matter which type one considers since the two differ

from one another by at most one. Stanley derived the exact expected value

and variance for initially descending alternating subsequences [12]. In par-

ticular, letting An denote the length of the longest alternating subsequence

of either type, he showed that EnAn ∼ 2
3n and that the variance is asymp-

totic to 8
45n. It has been proven that a central limit theorem holds with a

Gaussian limiting distribution [14, 12]. We are unaware of large deviations

results for this permutation statistic.

In this paper we derive the large deviations for increasing subsequences

and alternating subsequences in uniformly random permutations that avoid

a particular pattern in S3. We recall the definition of a pattern avoiding

permutation. If σ = σ1 · · ·σn ∈ Sn and η = η1 · · · ηm ∈ Sm, where 2 ≤ m ≤
n, then we say that σ contains η as a pattern if there exists a subsequence

1 ≤ i1 < i2 < · · · < im ≤ n such that for all 1 ≤ j, k ≤ m, the inequality

σij < σik holds if and only if the inequality ηj < ηk holds. If σ does not

contain η, then we say that σ avoids η. We denote by S
av(η)
n the set of

permutations in Sn that avoid η. For any η ∈ Sm, we denote the uniform

probability measure on S
av(η)
n by P

av(η)
n and denote expectations by E

av(η)
n .

It is well-known [3, 11] that |Sav(η)
n | = Cn, for every η ∈ S3, where Cn =

1
n+1

(
2n
n

)
is the nth Catalan number. One has

(1.1) Cn ∼
4n

√
πn

3
2

.
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We begin with alternating subsequences. In [7] it was proven that E
av(η)
n An ∼

n
2 , that the variance of An under P av

n (η) is asymptotic to 1
4n and that

An−n2
1
2

√
n

converges in distribution to the standard Gaussian distribution, for

all choices of η ∈ S3. We will prove the following theorem.

Theorem 1. Let η ∈ S3. The longest alternating subsequence An satisfies

(1.2)

lim
n→∞

1

n
logP av(η)

n (An ≥ nx) = lim
n→∞

1

n
logP av(η)

n (An > nx) = −Ialt(x), x ∈ [
1

2
, 1);

lim
n→∞

1

n
logP av(η)

n (An ≤ nx) = lim
n→∞

1

n
logP av(η)

n (An < nx) = −Ialt(x), x ∈ (0,
1

2
],

where

(1.3) Ialt(x) = x log x+ (1− x) log(1− x) + log 2, x ∈ (0, 1).

Remark 1. The function Ialt above is in fact the relative entropy H(µx;µ 1
2
)

of µx with respect to µ 1
2
, where µp denotes the distribution of the Bernoulli

random variable Xp satisfying P (Xp = 1) = 1 − P (Xp = 0) = p. From

Cramèrs theorem, if {Xn}∞n=1 are IID Bernoulli random variables with pa-

rameter 1
2 , and Sn =

∑n
j=1Xj , then (1.2) also holds with P

av(η)
n (An · · · )

replaced by P (Sn · · · ). in all four places. It would be very interesting to

understand why this connection arises.

Remark 2. Since |Sav(η)
n | = Cn, it follows from (1.1) and (1.2) that

lim
ε→0+

lim
n→∞

1

n
log |{σ ∈ Sav(η)

n : An(σ) ≥ 1− ε}| =

lim
ε→0+

lim
n→∞

1

n
log |{σ ∈ Sav(η)

n : An(σ) ≤ ε}| = log 2.

We now turn to increasing subsequences. In [6], the asymptotic behavior

of the expectation E
av(η)
n Ln and the variance vn(η) of the longest increasing

subsequence Ln under P
av(η)
n were obtained for all six permutations η ∈ S3.

Of course, the case η = 123 is trivial. The expectation E
av(η)
n Ln is on the

order n only for η ∈ {231, 312, 321}. The limiting distribution of Ln−E
av(η)
n Ln

vn(η)

was calculated as well, the limit being Gaussian only for η ∈ {231, 312}. The

paper culled a lot of other results in the literature in order to proceed. From

the results, it is clear that a classical large deviations result is only possible

for η ∈ {231, 312, 321}. We consider here η ∈ {231, 312}. In both of these
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cases, it was shown in [6] that E
av(η)
n Ln = n+1

2 . We will prove the following

theorem.

Theorem 2. Let η ∈ {231, 312}. The longest increasing subsequence Ln

satisfies

(1.4)
. lim
n→∞

1

n
logP av(η)

n (Ln ≥ nx) = −I inc(x), x ∈ [
1

2
, 1];

lim
n→∞

1

n
logP av(η)

n (Ln ≤ nx) = −I inc(x), x ∈ (0,
1

2
],

where

(1.5)

I inc(x) = 2Ialt(x) = 2
(
x log x+ (1− x) log(1− x) + log 2

)
, x ∈ (0, 1);

I inc(1) = log 4.

Remark 1. The function I inc above is in fact the relative entropy H(νx; ν 1
2
)

of νx with respect to ν 1
2
, where νp denotes the distribution of one-half the

sum of two independent Bernoulli random variables with parameter p. From

Cramèrs theorem, if {Yn}∞n=1 are IID random variables with distribution
1
2(X

(1)
1
2

+X
(2)
1
2

), where X
(1)
1
2

and X
(2)
1
2

are IID Bernoulli random variables with

parameter 1
2 , and Sn =

∑n
j=1 Yj , then (1.4) also holds with P

av(η)
n (Ln · · · )

replaced by P (Sn · · · ). in all four places.

Remark 2. The identity permutation in Sn is the only permutation σ ∈
Sn for which Ln(σ) = n. From this fact and (1.1) alone, it follows that

limn→∞
1
n logP

av(η)
n (Ln ≥ n) = − log 4.

Remark 3. The proof of Theorem 2 uses generating functions. The same

type of proof could be used to obtain the expectation and the variance of

Ln, which is considerably simpler than the proofs of these results in [6].

The proof of Theorem 1 is given in section 2 and the proof of Theorem 2

in given in section 3.

2. Proof of Theorem 1

Recall that the reverse of a permutation σ = σ1 · · ·σn is the permutation

σrev := σn · · ·σ1, and the complement of σ is the permutation σcom satisfying

σcomi = n + 1 − σi, i = 1, · · · , n. Let σrev-com denote the permutation ob-

tained by applying reversal and then complementation to σ (or equivalently,
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vice versa). Although there are six permutations η in S3, to prove the the-

orem, it suffices to consider just two of them—one from {231, 213, 312, 132}
and one from {123, 321}. Indeed, for all n ≥ 3, the operation reversal is

a bijection from S
av(231)
n to S

av(132)
n and from S

av(123)
n to S

av(321)
n , the op-

eration complementation is a bijection from S
av(231)
n to S

av(213)
n and the

operation reversal-complementation is a bijection from S
av(231)
n to S

av(312)
n .

Furthermore, An(σ) = An(σcom) = An(σrev-com) = An(σrev-com), for σ ∈ Sn.

Proposition 2.2–iii in [7] shows that the distributions of An under P
av(231)
n

and under P
av(321)
n coincide. Thus, to prove the theorem, we need only

consider the case η = 231.

For n ∈ N and σ ∈ Sn, let A+,−
n (σ) denote the longest alternating subse-

quence in σ that begins with an ascent and ends with a descent. An alter-

nating subsequence that begins with an ascent and ends with of descent is

of the form σi1 < σi2 > σi3 < · · · > σi2k+1
, for 1 ≤ i1 < i2 < · · · < i2k+1 ≤ n,

with k ∈ N. If there is no such alternating subsequence in σ, then de-

fine A+,−
n (σ) = 1. Note that A+,−

n (σ) takes on positive, odd integral val-

ues. It suffices to prove the theorem with A+,−
n (σ) in place of An since

An(σ) − A+,−
n (σ) ∈ {0, 1, 2}, for all σ ∈ Sn. For convenience in the proof,

we define A+,−
0 ≡ 0.

Let

Mn(λ) = Eav(231)
n eλA

+,−
n , λ ∈ R, n ≥ 0,

denote the moment generating function of A+,−
n . The main part of the proof

of the theorem is the proof of the following proposition.

Proposition 1.

(2.1) lim
n→∞

1

n
logMn(λ) = log(eλ + 1)− log 2.

Let I(x) denote the Legendre-Fenchel transform of the function appearing

on the right hand side of (2.1); that is,

(2.2) I(x) = sup
λ∈R

(
λx− log(eλ + 1) + log 2

)
, x ∈ R.

We have the following proposition.

Proposition 2. The function I, defined in (2.2) and restricted to x ∈ (0, 1),

is equal to Ialt defined in (1.3).
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Proposition 2 is well-known, as it corresponds to the case of IID symmetric

Bernoulli random variables—see Remark 1 after Theorem 1; thus, we will

skip the proof, which is a calculus exercise. Using Propositions 1 and 2, the

proof of Theorem 1 follows from a fundamental theorem in large deviations

theory.

Proof of Theorem 1. In light of Propositions 1 and 2, (1.2) follows from the

Gärtner-Ellis theorem [4]. �

It remains to prove Proposition 1.

Proof of Proposition 1. Every permutation σ ∈ Sav(231)
k has the property that

if σj = n, then the numbers {1, · · · , j− 1} appear in the first j− 1 positions

in σ (and then of course, the numbers {j, · · · , n−1} appear in the last n− j
positions in σ.) From this fact, along with the fact that |Sav(η)

n | = Cn, it

follows that

(2.3) P av(231)
n (σj = n) =

Cj−1Cn−j
Cn

, for j ∈ [n],

where C0 = 1. It also follows that under the conditional measure P
av(231)
n |{σj =

n}, the permutation σ1 · · ·σj−1 ∈ Sj−1 has the distribution P
av(231)
j−1 , the per-

mutation σ′j+1 · · ·σ′n has the distribution P
av(231)
n−j , where σ′k = σk−j+1, for

k = j + 1, · · · , n, and these two permutations are independent. From this

last fact and the definition of A+,−
n , it follows that

(2.4)
A+,−
n |{σj = n} dist

= A+,1
j−1 + 1 +A+,−

n−j , n ≥ 3, j = 2, · · · , n− 1;

A+,−
n |{σ1 = n} dist

= A+,−
n |{σn = n} dist

= A+,−
n−1, n ≥ 2,

where on the right hand side of (2.4), for any k, the random variable A+,−
k is

considered on Sk under the measure P
av(231)
k , and where on the right hand

side of the first line in (2.4), A+,1
j−1 and A+,−

n−j are independent.



LARGE DEVIATIONS FOR LONGEST ALT/INC SUBSEQUENCE 7

From (2.3) and (2.4), we have

(2.5)

Mn(λ) =
n∑
j=1

P av(231)
n (σj = n)Eav(231)

n (eλA
+,−
n |σj = n) =

n−1∑
j=2

Cj−1Cn−j
Cn

eλE
av(231)
j−1 eλA

+,−
j−1E

av(231)
n−j eλA

+,−
n−j + 2

Cn−1
Cn

E
av(231)
n−1 eλA

+,−
n−1 =

eλ
n−1∑
j=2

Cj−1Cn−j
Cn

Mj−1(λ)Mn−j(λ) + 2
Cn−1
Cn

Mn−1(λ), n ≥ 3.

Multiplying the leftmost expression and the rightmost expression in (2.5)

by Cnt
n, we have

(2.6)
CnMn(λ)tn = eλt

( n−1∑
j=2

Cj−1Mj−1(λ)Cn−jMn−j(λ)
)
tn−1+

2tCn−1Mn−1(λ)tn−1, n ≥ 3.

Summing over n gives

(2.7)

∞∑
n=3

CnMn(λ)tn = eλt
∞∑
n=3

( n−1∑
j=2

Cj−1Mj−1(λ)Cn−jMn−j(λ)
)
tn−1+

2t
∞∑
n=3

Cn−1Mn−1(λ)tn−1.

Define

(2.8) Gλ(t) =
∞∑
n=0

CnMn(λ)tn.

For use in some of the calculations below, note that C0 = C1 = 1, C2 = 2,

M0(λ) = 1 and M1(λ) = M2(λ) = eλ. We have

(2.9) G2
λ(t) =

∞∑
n=0

( n∑
k=0

CkMk(λ)Cn−kMn−k(λ)
)
tn.
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The double sum on the right hand side of (2.7) can be written as

(2.10)
∞∑
n=3

( n−1∑
j=2

Cj−1Mj−1(λ)Cn−jMn−j(λ)
)
tn−1 =

∞∑
n=3

( n−2∑
k=1

CkMk(λ)Cn−1−kMn−1−k(λ)
)
tn−1 =

∞∑
n=3

( n−1∑
k=0

CkMk(λ)Cn−1−kMn−1−k(λ)
)
tn−1 − 2

∞∑
n=3

Cn−1Mn−1(λ)tn−1 =

∞∑
m=2

( m∑
k=0

CkMk(λ)Cm−kMm−k(λ)
)
tm − 2

∞∑
m=2

CmMm(λ)tm =

(G2
λ(t)− 2eλt− 1)− 2(Gλ(t)− eλt− 1) = G2

λ(t)− 2Gλ(t) + 1,

where (2.9) has been used for the penultimate equality. From (2.7), (2.10)

and the definition of Gλ, we obtain(
Gλ(t)− 2eλt2 − eλt− 1

)
= eλt

(
G2
λ(t)− 2Gλ(t) + 1

)
+ 2t

(
Gλ(t)− eλt− 1

)
,

or equivalently

eλtG2
λ(t) +

(
2(1− eλ)t− 1

)
Gλ(t) + 2(eλ − 1)t+ 1 = 0.

Since Gλ(0) = 1, the quadratic formula yields

Gλ(t) =
1− 2(1− eλ)t−

√(
2(1− eλ)t− 1

)2 − 4eλt
(
2(eλ − 1)t+ 1

)
2eλt

,

which we rewrite as

(2.11) Gλ(t) =
1− 2(1− eλ)t−

√
4(1− e2λ)t2 − 4t+ 1

2eλt
.

From (2.11), it follows that the radius of convergence Rλ of the power

series representing Gλ is the smaller of the absolute values of the two roots

of the quadratic polynomial 4(1−e2λ)t2−4t+1. The roots of this polynomial

are 1±eλ
2(1−e2λ) . Thus, we have Rλ = |eλ−1|

2|e2λ−1| = 1
2(eλ+1)

. Consequently, from

(2.8), we obtain

(2.12) lim sup
n→∞

(CnMn(λ))
1
n = 2(eλ + 1).
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From (1.1) and (2.12), we obtain

(2.13) lim sup
n→∞

1

n
logMn(λ) = log(eλ + 1)− log 2.

In light of (2.13), to complete the proof of the proposition it suffices to show

that the limit limn→∞
1
n logMn(λ) exists.

From (2.8), (2.11) and (1.1), in order to show that limn→∞
1
n logMn(λ)

exists, it suffices to show that limn→∞ a
1
n
n exists, where an is the coefficient

of tn in the power series expansion

(2.14)
√

4(1− e2λ)t2 − 4t+ 1 =

∞∑
n=0

ant
n.

Intuitively, it seems “obvious” that this limit exists, but unfortunately, we

don’t have a real quick proof. Recall that the two roots of 4(1−e2λ)t2−4t+1

are r1 = 1−eλ
2(1−e2λ) > 0 and r2 = 1+eλ

2(1−e2λ) . (We suppress the dependence on

λ.) We have r1 < |r2|. We write

(2.15) 4(1− e2λ)t2 − 4t+ 1 = (1− t

r1
)(1− t

r2
).

The Taylor series of
√

1− x around x = 0 is given by

(2.16)
√

1− x =
∞∑
n=0

(−1)n
(1

2

n

)
xn = 1 +

∞∑
n=1

(−1)n
1
2(12 − 1) · · · (12 − (n− 1))

n!
xn =

1−
∞∑
n=1

(2n− 2)!

n!(n− 1)!22n−1
xn.

Thus, from (2.15) and (2.16), we have

(2.17)

√
4(1− e2λ)t2 − 4t+ 1 =

√
1− t

r1

√
1− t

r2
=

1−
∞∑
n=1

(2n− 2)!

n!(n− 1)!22n−1rn1
tn −

∞∑
n=1

(2n− 2)!

n!(n− 1)22n−1!rn2
tn

+
∞∑
n=2

( n∑
j=1

(2j − 2)!

j!(j − 1)!22j−1 rj1

(2(n− j)− 2)!

(n− j)!(n− j − 1)!22(n−j)−1 rn−j2

)
tn

Using Stirling’s formula, one finds that the expression (2m−2)!
m!(m−1)!22m−1 , for

m ∈ N, decays to zero on the order m−
3
2 . In particular then, this expression

is bounded and has sub-exponential decay. Using this with (2.14) and (2.17)
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and the fact that r1 < |r2|, it follows that limn→∞ a
1
n
n = 1

r1
. This completes

the proof of Proposition 1 �

3. Proof of Theorem 2

Consider η ∈ {231, 312}. For convenience, let L0 = 0. Let

Mn(λ) = Eav(η)
n eλLn , λ ∈ R, n ≥ 0,

denote the moment generating function of Ln. The main part of the proof

of the theorem is the proof of the following proposition.

Proposition 3. Let η ∈ {231, 312}. Then

(3.1) lim
n→∞

1

n
logMn(λ) = 2 log(e

λ
2 + 1)− log 4.

Let I(x) denote the Legendre-Fenchel transform of the function appearing

on the right hand side of (3.1); that is,

(3.2) I(x) = sup
λ∈R

(
λx− 2 log(e

λ
2 + 1) + log 4

)
, x ∈ R.

We will proof the following proposition.

Proposition 4. The function I, defined in (3.2) and restricted to x ∈ (0, 1),

is equal to I inc defined in (1.5).

Proof of Theorem 2. In light of Propositions 3 and 4, (1.4) follows from the

Gärtner-Ellis theorem [4], except for the case x = 1. The case x = 1 is

explained in Remark 2 following the statement of the theorem. �

We now turn to the proof of the two propositions.

Proof of Proposition 3. In this paragraph we begin the proof for the case

η = 231. In the next paragraph, we explain why the same proof works for

η = 312, and then continue to the end of the proof for η = 231. We have

Mn(λ) = P av(231)
n eλLn , λ ∈ R, n ≥ 0.

From the discussion in the first paragraph of the proof of Proposition 1 and

from the definition of Ln, it follows that

(3.3)
Ln|{σj = n} dist

= Lj−1 + Ln−j , n ≥ 2, j = 1, · · · , n− 1;

Ln|{σn = n} dist
= Ln−1 + 1, n ≥ 2,
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where on the right hand side of (3.3), for any k, the random variable Lk is

considered on Sk under the measure P
av(231)
k , and where on the right hand

side of the first line in (3.3), Lj−1 and Ln−j are independent. From (3.3)

and (2.3), we have

(3.4)

Mn(λ) =

n∑
j=1

P av(231)
n (σj = n)Eav(231)

n (eλLn |σj = n) =

n−1∑
j=1

Cj−1Cn−j
Cn

E
av(231)
j−1 eλLj−1E

av(231)
n−j eλLn−j +

Cn−1
Cn

eλE
av(231)
n−1 eλLn−1 =

n−1∑
j=1

Cj−1Cn−j
Cn

Mj−1(λ)Mn−j(λ) + eλ
Cn−1
Cn

Mn−1(λ), n ≥ 2.

In the case η = 312, the same type of reasoning as in (2.3) shows that

P
av(312)
n (σj = 1) =

Cj−1Cn−j
Cn

. Also, the same reasoning as in (3.3) gives

(3.5)
Ln|{σj = 1} dist

= Lj−1 + Ln−j , n ≥ 2, j = 2, · · · , n;

Ln|{σ1 = 1} dist
= Ln−1 + 1, n ≥ 2,

where on the right hand side of (3.5), for any k, the random variable Lk is

considered on Sk under the measure P
av(312)
k , and where on the right hand

side of the first line in (3.5), Lj−1 and Ln−j are independent. Using the

these facts, one finds that the Laplace transform for this case also satisfies

(3.4) Thus, it suffices to continue just for the case η = 231.

Multiplying the leftmost and the rightmost expressions in (3.4) by Cnt
n,

we have

(3.6)
CnMn(λ)tn = t

( n−1∑
j=1

Cj−1Mj−1(λ)Cn−jMn−j(λ)
)
tn−1+

eλtCn−1Mn−1(λ), n ≥ 2.

Summing over n gives

(3.7)

∞∑
n=2

CnMn(λ)tn = t

∞∑
n=2

( n−1∑
j=1

Cj−1Mj−1(λ)Cn−jMn−j(λ)
)
tn−1+

eλt

∞∑
n=2

Cn−1Mn−1(λ)tn−1.
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Define

(3.8) Gλ(t) =
∞∑
n=0

CnMn(λ)tn.

For use in some of the calculations below, note that C0 = C1 = 1, M0(λ) = 1

and M1(λ) = eλ. We have

(3.9) G2
λ(t) =

∞∑
n=0

( n∑
k=0

CkMk(λ)Cn−kMn−k(λ)
)
tn.

The double sum on the right hand side of (3.7) can be written as

(3.10)
∞∑
n=2

( n−1∑
j=1

Cj−1Mj−1(λ)Cn−jMn−j(λ)
)
tn−1 =

∞∑
n=2

( n−2∑
k=0

CkMk(λ)Cn−1−kMn−1−k(λ)
)
tn−1 =

∞∑
n=2

( n−1∑
k=0

CkMk(λ)Cn−1−kMn−1−k(λ)
)
tn−1 −

∞∑
n=2

Cn−1Mn−1(λ)tn−1 =

∞∑
m=1

( m∑
k=0

CkMk(λ)Cm−kMm−k(λ)
)
tm −

∞∑
m=1

CmMm(λ)tm =

(G2
λ(t)− 1)− (Gλ(t)− 1) = G2

λ(t)−Gλ(t),

where (3.9) has been used for the penultimate equality. From (3.7), (3.10)

and the definition of Gλ, we obtain(
Gλ(t)− eλt− 1

)
= t
(
G2
λ(t)−Gλ(t)

)
+ eλt

(
Gλ(t)− 1

)
,

or equivalently

tG2
λ(t) +

(
(eλ − 1)t− 1

)
Gλ(t) + 1 = 0.

Since Gλ(0) = 1, the quadratic formula yields

Gλ(t) =
1− (eλ − 1)t−

√(
(eλ − 1)t− 1

)2 − 4t

2t
,

which we rewrite as

(3.11) Gλ(t) =
1− (eλ − 1)t−

√
(eλ − 1)2t2 − 2(eλ + 1)t+ 1

2t
.
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From (3.11), it follows that the radius of convergence Rλ of the power

series representing Gλ is the smaller of the absolute values of the two roots

of the quadratic polynomial (eλ−1)2t2−2(eλ+1)t+1. After a bit of algebra,

one finds that the two roots are (e
λ
2 ±1)2

(eλ−1)2 . Thus, we have Rλ = (e
λ
2 −1)2

(eλ−1)2 .

Consequently, from (3.8), we obtain

(3.12) lim sup
n→∞

(CnMn(λ))
1
n =

(eλ − 1)2

(e
λ
2 − 1)2

.

From (1.1) and (3.12), we obtain

(3.13)

lim sup
n→∞

1

n
logMn(λ) = 2 log(eλ−1)−2 log(e

λ
2−1)−log 4 = 2 log(e

λ
2 +1)−log 4.

In light of (3.13), to complete the proof of the proposition it suffices to show

that the limit limn→∞
1
n logMn(λ) exists. The proof of this is exactly the

same as the corresponding proof in section 2. �

Proof of Proposition 4. For x ∈ (0, 1), define

gx(λ) = λx− 2 log(e
λ
2 + 1) + log 4, λ ∈ R.

We have

g′x(λ) = x− e
λ
2

e
λ
2 + 1

.

Setting the derivative equal to 0 and solving, we obtain λ = 2 log x
1−x . Since

limλ→±∞ gx(λ) = −∞, it follows that

sup
λ∈R

gx(λ) = gx(2 log
x

1− x
) = 2x log x+ 2(1− x) log(1− x) + log 4 =

2
(
x log x+ (1− x) log(1− x) + log 2

)
= I inc(x),

where I inc(x) is as in (1.5). �
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