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Abstract. A permutation is separable if it can be obtained from the

singleton permutation by iterating direct sums and skew sums. Equiv-

alently, it is separable if and only it avoids the patterns 2413 and 3142.

Under the uniform probability on separable permutations of [n], let the

random variable An denote the length of the longest alternating sub-

sequence. Also, let A+,−
n denote the length of the longest alternating

subsequence that begins with an ascent and ends with a descent, and

define A−,+
n , A+,+

n , A−,−
n similarly. By symmetry, the first two and the

last two of these latter four random variables are equi-distributed. We

prove that the expected value of any of these five random variables be-

haves asymptotically as (2 −
√

2)n ≈ 0.5858n. We also obtained the

more refined estimates that the expected value of A+,−
n and of A−,+

n is

equal to (2−
√

2)n− 1
4
(3− 2

√
2) + o(1) and that the expected value of

A+,+
n and of A−,−

n is equal to (2 −
√

2)n + 3
4
(3 − 2

√
2) + o(1). Finally,

we show that the variance of any of the four random variables A±,±
n

behaves asymptotically as 16−11
√
2

2
n ≈ 0.2218n.

1. Introduction and Statement of Results

Let Sn denote the permutations of [n] := {1, · · · , n}. Given σ ∈ Sk and

τ ∈ Sl, the direct sum of σ and τ is the permutation in Sk+l given by

(σ ⊕ τ)(i) =

σ(i), i = 1, · · · , k;

τ(i− k) + k, i = k + 1, · · · k + l,
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and the skew sum σ 	 τ is the permutation in Sk+l given by

(σ 	 τ)(i) =

σ(i) + l, i = 1, · · · , k;

τ(i− k), i = k + 1, · · · k + l.

A permutation is indecomposable if it cannot be represented as the direct sum

of two nonempty permutations and is skew indecomposable if it cannot be

represented as the skew sum of two nonempty permutations. A permutation

is separable if it can be obtained from the singleton permutation by iterating

direct sums and skew sums. Equivalently, a permutation is separable if

it can be successively decomposed and skew decomposed until all of the

indecomposable and skew indecomposable pieces of the permutation are

singletons. For example, using one-line notation, consider the separable

permutation σ = 4352167. It can be decomposed into 43521 ⊕ 12. Then

43521 can be skew decomposed into 213	21 and 12 can be decomposed

into 1 ⊕ 1. Now 213 can be decomposed into 21⊕1 and 21 can be skew

decomposed into 1	1. Finally, again 21 can be skew decomposed into 1	1.

It is well-known [3] that a permutation is separable if and only it avoids

the patterns 2413 and 3142. For more on pattern avoiding permutations, see

for example [2]. The fact that separable permutations can be enumerated by

a closed form generating function (see section 2) makes them rather tractable

to analyze. The study of general pattern avoiding permutations goes back

to Knuth’s observation [7] that a permutation is so-called stack sortable if

and only if it 231-avoiding. Similarly, the study of separable permutations

goes back to [1] where it was shown that these are precisely the permutations

which are sortable by so-called pop stacks. Separable permutations also arise

in a variety of other applications, for example in bootstrap percolation [8]

and in connection to polynomial interchanges where one studies the possible

ways that the relative order of the values of a family of polynomials can be

modified when crossing a common zero [6].

Let SEP(n) denote the set of separable permutations in Sn, and let P sep
n

and Esep
n denote respectively the uniform probability measure on SEP(n)

and the expectation with respect to that measure. In this paper we study

the length of the longest alternating subsequence in a random separable

permutation. An alternating subsequence of length k in a permutation σ =

σ1 · · ·σn ∈ Sn is a subsequence of the form σi1 > σi2 < σi3 > · · ·σik or
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σi1 < σi2 > σi3 < · · ·σik , where 1 ≤ i1 < · · · < ik ≤ n. Let An = An(σ)

denote the length of the longest alternating subsequence in a permutation

σ ∈ Sn. For the proofs of our results as well as for the statements of some of

them, we need to differentiate between four types of alternating sequences—

begin with an ascent and end with an ascent; begin with an ascent and end

with a descent; begin with a descent and end with an ascent; begin with

a descent and end with a descent. An alternating subsequence of length

k which begins with an ascent and ends with an ascent in a permutation

σ = σ1 · · ·σn ∈ Sn is a subsequence of the form σi1 < σi2 > · · · < σik . The

other three types are defined similarly. Denote the length of the longest

alternating subsequence of each of the four types of alternating subsequences

by A±,±n . From symmetry considerations, it is clear that

(1.1) A+,+
n

dist
= A−,−n ; A+,−

n
dist
= A−,+n , under P sep

n .

Stanley [9] obtained exact formulas for the expected value and the vari-

ance of A−n := max(A−,−n , A−,+n ) for a uniformly random permutation in Sn,

from which it follows that the expectation is asymptotic to 2
3n and the vari-

ance is asymptotic to 8
45n. The length of the longest alternating subsequence

in a random permutation avoiding a pattern of length three was studied in

[4]. Exact formulas were obtained for the expected value and the variance

of A+
n := max(A+,+

n , A+,−
n ), for each pattern η ∈ S3, from which it follows

that the expectation is asymptotic to 1
2n and the variance is asymptotic to

1
4n, for every pattern η ∈ S3.

We will prove the following theorem concerning the expectation.

Theorem 1.

(1.2) Esep
n An ∼ (2−

√
2)n ≈ .5858n.

Remark 1. Since 0 ≤ An−A±,±n ≤ 2, (1.2) also holds when any of the four

random variables A±,±n is substituted for An.

Remark 2. Note that the expected length of the longest alternating subse-

quence in a random separable permutation is shorter than that of a uniformly

random permutation, but longer than that of a random permutation avoid-

ing any particular pattern of length three. (See the paragraph preceding

Theorem 1.)
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We will prove the following theorem which refines Theorem 1 and gives

the asymptotic behavior of the variance.

Theorem 2. i.

(1.3) Esep
n A+,−

n = Esep
n A−,+n = (2−

√
2)n− 1

4
(3− 2

√
2) + o(1);

(1.4) Varsepn (A+,−
n ) = Varsepn (A−,+n ) ∼ 16− 11

√
2

2
n ≈ 0.2218n.

ii.

(1.5) Esep
n A+,+

n = Esep
n A−,−n = (2−

√
2)n+

3

4
(3− 2

√
2) + o(1);

(1.6) Varsepn (A+,+
n ) = Varsepn (A−,−n ) ∼ 16− 11

√
2

2
n ≈ 0.2218n.

Remark 1. From Theorem 2, it follows that from the limited perspective

of mean and variance, A+,+
n or A−,−n behaves as a deterministic translation

of A+,−
n or A−,+n by 3 − 2

√
2. We note that the quantity 3 − 2

√
2 plays

a fundamental role in the proofs; it is one of the roots of the generating

function corresponding to the count of separable permutations–see section

2.

Remark 2. By Theorems 1 and 2, one has Varsepn (A±,±n ) = o

((
Esep
n A±,±n

)2)
,

for all four random variables A±,±n . Thus, by the second moment method

(Chebyshev’s inequality), the following weak law of large numbers is imme-

diate:

lim
n→∞

P sep
n

(
2−
√

2− ε ≤ A±,±n
n
≤ 2−

√
2 + ε

)
= 1, for all ε > 0.

In section 2 we present some preliminary material on separable permu-

tations and on alternating subsequences. In section 3, we define two gener-

ating functions related to the mean of the length of the longest alternating

sequence and evaluate them explicitly. Using one of these generating func-

tions, we prove Theorem 1 in section 4. In section 5, we define two generating

functions related to the second moment of the length of the longest alternat-

ing sequence and evaluate them explicitly. Using all four of the above noted

generating functions, we prove Theorem 2 in section 6. In the appendix
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we state and prove three propositions, concerning the asymptotic behav-

ior as n → ∞ of the coefficient of tn in the power series for the functions

(t2− 6t+ 1)
m
2 , for m ∈ {1,−1,−3}. These results are critical for the proofs

of Theorems 1 and 2. More precisely, formulas (7.1) from Proposition 1

and (7.28) from Proposition 2 are needed for the proof of Theorem 1, while

their more precise versions, (7.2) and (7.29), along with formula (7.33) in

Proposition 3 are needed for the proof of Theorem 2.

2. Preliminary material

Let sn = |SEP(n)|, n ≥ 1, denote the number of separable permutations

in Sn. Let

s(t) =
∞∑
n=1

snt
n

denote the generating function of {sn}∞n=1. For a separable permutation,

define the length of the first indecomposable block and the length of the

first skew indecomposable block respectively by

(2.1)
B+,n

1 (σ) = min{j : σ([j]) = [j]}, σ ∈ SEP(n);

B−,n1 (σ) = min{k : σ([k]) = [n]− [n− k]}, σ ∈ SEP(n).

By the definition of separable permutations, for each σ ∈ SEP(n), with n ≥
2, exactly one out of B+,n

1 (σ) and B−,n1 (σ) is equal to n, and by symmetry,

(2.2)

|{σ ∈ SEP(n) : B+,n
1 (σ) = n| = |{σ ∈ SEP(n) : B−,n1 (σ) = n| = 1

2
sn, n ≥ 2.

That is, half of the permutations in SEP(n), n ≥ 2, are indecomposable and

half are skew indecomposable. Partitioning SEP(n) by {B+,n
1 = j}nj=1 (or

alternatively, by {B−,n1 = j}nj=1), and using the concatenating structure of

separable permutations, it follows that

(2.3) sn = s1sn−1 +
1

2

n−1∑
j=2

sjsn−j +
1

2
sn, n ≥ 2,

and

(2.4) P sep
n (B+,n

1 = j) = P sep
n (B−,n1 = j) =


s1sn−1

sn
; j = 1;

1
2
sjsn−j

sn
, j = 2 · · ·n− 1;

1
2 , j = n.
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From (2.3) it is straightforward to show that

(2.5) s(t) =
1

2
(1− t−

√
t2 − 6t+ 1 ), for |t| < 3− 2

√
2.

(Multiply both sides of (2.3) by tn and sum over n from 2 to ∞, and then

solve for s(t).) Using the above formula for the generating function, one can

prove that

sn ∼
1

2
3
4

√
πn3

(3− 2
√

2)−n+
1
2 .

We prove this asymptotic formula as well as a more refined version in Propo-

sition 1. We note that in [5, p. 474-475], the above formula appears with a

mistake—instead of 2
3
4 , one find there 2. (Our sn is equal to their Dn−1.)

The sequence of integers {sn}∞n=1 is known as the sequence of big Schröder

numbers; see A006318 in the On-Line Encyclopedia of Integer Sequences.

As noted before the statement of Theorem 2, we differentiate between

four types of alternating sequences, depending on whether they begin with

an ascent or a descent and whether they end with an ascent or a descent,

and denote the length of the longest one of each type by A±,±n . We note

that a subsequence of length two of the form σi1 < σi2 begins with an ascent

and ends with an ascent. We will derive recursion formulas that allow us to

obtain generating functions in explicit forms. In order to make the formulas

work, the following definition will be crucial:

(2.6)

A singleton σi1 is considered an alternating sequence both of the type (+,−)

and of the type (−,+);

A singleton σi1 is not considered an alternating sequence of the type (+,+)

or of the type (−,−).

In light of (2.6), note that

(2.7)

A+,+
1 = A−,−1 ≡ 0; A+,−

1 = A−,+1 ≡ 1;

A+,−
2 = A−,+2 ≡ 1

A+,+
2 (σ) =

2, σ = 12,

0, σ = 21;
A−,−2 (σ) =

0, σ = 12,

2, σ = 21.

Remark. Note that the definition (2.6) ensures that A+,+
n and A−,−n take

on only even values and that A+,−
n and A−,+n take on only odd values.
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The following lemma will play an important role. Let P sep
n (· |B+;n

1 = n)(
P sep
n (· |B−;n1 = n)

)
denote the distribution P sep

n conditioned on {B+;n
1 = n}(

{B−;n1 = n}
)
.

Lemma 1. i. The distribution of A+,+
n

(
A−,−n

)
under P sep

n (· |B+;n
1 = n)

coincides with the distribution of A−,−n
(
A+,+
n

)
under P sep

n (· |B−;n1 = n);

ii. The distribution of A+,−
n

(
A−,+n

)
under P sep

n (· |B+;n
1 = n) coincides with

the distribution of A−,+n

(
A+,−
n

)
under P sep

n (· |B−;n1 = n);

iii. The distributions of A+,−
n and A−,+n coincide under P sep

n (· |B+;n
1 = n).

Proof. Recall that the reverse of a permutation σ = σ1 · · ·σn is the permu-

tation σrev := σn · · ·σ1, and the complement of σ is the permutation σcom

satisfying σcomi = n + 1 − σi, i = 1, · · · , n. Let σrev-com denote the per-

mutation obtained by applying reversal and then complementation to σ (or

equivalently, vice versa). All of these operations are bijections of SEP(n);

indeed, they all preserve the property of being simultaneously 2413 and 3142

avoiding. It is easy to see that

B+,n
1 (σ) = 1 ⇔ B−,n1 (σrev) = n ⇔ B−,n1 (σcom) = n, σ ∈ Sn.

From the above facts, it follows that

(2.8)

σ → σcom is a bijection of SEP(n) ∩ {B+,n
1 = n} to SEP(n) ∩ {B−,n1 = n};

σ → σrev-com is a bijection of SEP(n) ∩ {B+,n
1 = n} to itself.

Also, it is easy to check that

(2.9)

A+,+
n (σ) = A−,−n (σcom), σ ∈ Sn;

A+,−
n (σ) = A−,+n (σcom);

A+,−
n (σ) = A+,−

n (σrev).

From the latter two equations in (2.9), it follows that

(2.10) A+,−
n (σ) = A−,+n (σrev-com).

Part (i) of the lemma follows from the first line of (2.8) and the first line

of (2.9); part (ii) follows from the first line of (2.8) and the second line of

(2.9); and part (iii) follows from the second line of (2.8) and (2.10). �
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3. Generating functions related to the mean of An

Define

(3.1) c±,±n = Esep
n (A±,±n |B+,n

1 = n); d±,±n = Esep
n (A±,±n |B−,n1 = n).

Define the generating functions

(3.2)

G+,−(t) =

∞∑
n=1

snc
+,−
n tn;

G−,−(t) =

∞∑
n=1

snc
−,−
n tn.

We will prove the following theorem.

Theorem 3.

(3.3)

G+,−(t) =
t(1− t)√
t2 − 6t+ 1

;

G−,−(t) =
t(1− t)√
t2 − 6t+ 1

− t(1− t)
2

− t

2

√
t2 − 6t+ 1.

Proof. By (2.2) we have

(3.4) Esep
n A±,±n =

1

2
c±,±n +

1

2
d±,±n .

Conditioning on {B+,n
1 = j}, j = 1, · · · , n, we obtain the equation

(3.5) Esep
n A±,±n =

n∑
j=1

P sep
n (B+,n

1 = j)Esepn(A±,±n |B+,n
1 = j).

Consider (3.5) with A+,+
n . From the definition of A+,+

n and the concatenating

structure of separable permutations as manifested in (2.3), we have

(3.6)

A+,+
n |{B+,n

1 = j} dist
= A+,−

j |{B+,j
1 = j}+A−,+n−j , j = 1, · · · , n− 1, n ≥ 3.

where the random variable on the left hand side is considered under P sep
n ,

the random variable A+,−
j |{B+,j

1 = j} is considered under P sep
j , the random

variable A−,+n−j is considered under P sep
n−j , and A+,−

j |{B+,j
1 = j} and A−,+n−j are

independent.

To illustrate (3.6), we give three examples of what can occur. Consider

first the permutation 342178956, which satisfies B+,9
1 (342178956) = 4. So

n = 9, j = 4 and n−j = 5. The length of the longest alternating subsequence

that begins and ends with an ascent is six. Such an alternating subsequence
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is built from a longest alternating subsequence beginning with an ascent and

ending with a descent that appears in the first j entries of the permutation—

3421, and then concatenating this with a longest alternating subsequence

that begins with a descent and ends with an ascent in the last n− j entries

of the permutation— 78956. There are two possibilities for the first piece,

namely 342 and 341, and there are three possibilities for the second piece,

namely 756 and 856 and 956. Consider now the permutation 124378956,

which satisfies B+,9
1 (124378956) = 1. So n = 9, j = 1 and n − j = 8. The

length of the longest alternating subsequence that begins and ends with

an ascent is six. Such an alternating subsequence is built from a longest

alternating subsequence beginning with an ascent and ending with a descent

that appears in the first j entries of the permutation— 1, and concatenating

this with a longest alternating subsequence that begins with a descent and

ends with an ascent in the last n− j entries of the permutation— 24378956.

There is one possibility for the first piece, namely 1, and there are three

possibilities for the second piece, namely 43756, 43856 and 43956. Note that

for this to work, it was necessary in (2.6) that a singleton be defined as an

alternating sequence of the type (+,−). Finally, consider the permutation

324561789, which satisfies B+,9
1 (324561789) = 6. So n = 9, j = 6 and

n−j = 3. The length of the longest alternating subsequence that begins and

ends with an ascent is four. Such an alternating subsequence is built from a

longest alternating subsequence beginning with an ascent and ending with

a descent that appears in the first j entries of the permutation— 324561,

and then concatenating this with a longest alternating subsequence that

begins with a descent and ends with an ascent in the last n − j entries

of the permutation— 789. There are six possibilities for the first piece,

namely 341,351,361,241,251,261, and there are three possibilities for the

second piece, namely 7, 8, 9. Note that for this to work, it was necessary

in (2.6) that a singleton be defined as an alternating sequence of the type

(−,+).

Now consider (3.5) with A−,+n . From the definition of A−,+n and the con-

catenating structure of separable permutations as manifested in (2.3), we
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have

(3.7)

A−,+n |{B+,n
1 = j} dist

= A−,−j |{B+,j
1 = j}+A−,+n−j , j = 1, · · · , n− 1, n ≥ 3.

To illustrate (3.7), we give two examples of what can occur. Consider first

the permutation 342178956, which satisfies B+,n
1 (342178956) = 4. So n =

9, j = 4 and n−j = 5. The length of the longest alternating subsequence that

begins with a descent and ends with an ascent is five. Such an alternating

subsequence is built from a longest alternating subsequence beginning with

a descent and ending with a descent that appears in the first j entries of the

permutation— 3421, and then concatenating this with a longest alternating

subsequence that begins with a descent and ends with an ascent in the last

n − j entries of the permutation— 78956. There are four possibilities for

the first piece, namely 32, 42, 31, 41, and there are three possibilities for

the second piece, namely, 756, 856, 956. Consider now the permutation

145678923, which satisfies B+,9
1 (145678923) = 1. So n = 9, j = 1 and

n−j = 8. The length of the longest alternating subsequence that begins with

a descent and ends with an ascent is three. Such an alternating subsequence

is built from a longest alternating subsequence beginning with a descent and

ending with a descent that appears in the first j entries of the permutation—

1, and then concatenating this with a longest alternating subsequence that

begins with a descent and ends with an ascent in the last n− j entries of the

permutation— 45678923. There is one possibility for the first piece, namely

the null set, and there are six possibilities for the second piece, namely x23,

with x ∈ {4, 5, 6, 7, 8, 9}. Note that for this to work, it was necessary in

(2.6) that a singleton be defined not to be an alternating sequence of the

type (−,−).

Taking expectations in (3.6), and using (3.5) along with (3.4) and (2.4),

we obtain

Esep
n A+,+

n =
1

2
c+,+n +

1

2
d+,+n =

s1sn−1
sn

(
c+,−1 +

1

2
c−,+n−1 +

1

2
d−,+n−1

)
+

n−1∑
j=2

1
2sjsn−j

sn

(
c+,−j +

1

2
c−,+n−j +

1

2
d−,+n−j

)
+

1

2
c+,+n , n ≥ 3,
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or equivalently (noting from (2.7) that c+,−1 = 1),

(3.8)

1

2
d+,+n =

s1sn−1
sn

(
1+

1

2
c−,+n−1+

1

2
d−,+n−1

)
+

n−1∑
j=2

1
2sjsn−j

sn

(
c+,−j +

1

2
c−,+n−j+

1

2
d−,+n−j

)
, n ≥ 3.

Taking expectations in (3.7), and using (3.5) along with (3.4) and (2.4), we

obtain

Esep
n A−,+n =

1

2
c−,+n +

1

2
d−,+n =

s1sn−1
sn

(
c−,−1 +

1

2
c−,+n−1 +

1

2
d−,+n−1

)
+

n−1∑
j=2

1
2sjsn−j

sn

(
c−,−j +

1

2
c−,+n−j +

1

2
d−,+n−j

)
+

1

2
c−,+n , n ≥ 3,

or equivalently (noting from (2.7) that c−,−1 = 0),

(3.9)

1

2
d−,+n =

s1sn−1
sn

(1

2
c−,+n−1+

1

2
d−,+n−1

)
+
n−1∑
j=2

1
2sjsn−j

sn

(
c−,−j +

1

2
c−,+n−j+

1

2
d−,+n−j

)
, n ≥ 3.

By Lemma 1, we can substitute in equations (3.8) and (3.9) so that each

of them is given only in terms of c−,−· and c+,−· . Indeed, by Lemma 1, we

have

(3.10) d+,+n = c−,−n , c−,+n = c+,−n , d−,+n = c+,−n .

Using (3.10) to substitute in (3.8) and (3.9) and recalling that s1 = 1, we

obtain the two equations

(3.11)

1

2
c−,−n =

sn−1
sn

(
1 + c+,−n−1

)
+

n−1∑
j=2

1
2sjsn−j

sn

(
c+,−j + c+,−n−j

)
, n ≥ 3;

1

2
c+,−n =

sn−1
sn

c+,−n−1 +

n−1∑
j=2

1
2sjsn−j

sn

(
c−,−j + c+,−n−j

)
, n ≥ 3.

Multiplying (3.11) by 2snt
n and summing over n gives

(3.12)
∞∑
n=3

snc
−,−
n tn = 2t

∞∑
n=3

sn−1
(
1 + c+,−n−1

)
tn−1 +

∞∑
n=3

( n−1∑
j=2

sjsn−j
(
c+,−j + c+,−n−j

))
tn;

∞∑
n=3

snc
+,−
n tn = 2t

∞∑
n=3

sn−1c
+,−
n−1t

n−1 +

∞∑
n=3

( n−1∑
j=2

sjsn−j
(
c−,−j + c+,−n−j

))
tn.
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We have

(3.13)
∞∑
n=3

( n−1∑
j=2

sjsn−jc
+,−
j

)
tn =

∞∑
n=3

( n−1∑
j=1

sjsn−jc
+,−
j

)
tn − t

∞∑
n=3

sn−1t
n−1 =

∞∑
n=2

( n−1∑
j=1

sjsn−jc
+,−
j

)
tn − t

∞∑
n=2

sn−1t
n−1 =

( ∞∑
n=1

snc
+,−
n tn

)( ∞∑
n=1

snt
n
)
− t

∞∑
n=2

sn−1t
n−1,

and similarly,

(3.14)
∞∑
n=3

( n−1∑
j=2

sjsn−jc
+,−
n−j
)
tn =

∞∑
n=2

( n−1∑
j=1

sjsn−jc
+,−
n−j
)
tn − t

∞∑
n=2

sn−1c
+,−
n−1t

n−1 =

( ∞∑
n=1

snt
n
)( ∞∑

n=1

snc
+,−
n tn

)
− t

∞∑
n=2

sn−1c
+,−
n−1t

n−1.

Also, noting from (2.7) that c−,−1 = 0, we have

(3.15)
∞∑
n=3

( n−1∑
j=2

sjsn−jc
−,−
j

)
tn =

∞∑
n=2

( n−1∑
j=1

sjsn−jc
−,−
j

)
tn =

( ∞∑
n=1

snc
−,−
n tn

)( ∞∑
n=1

snt
n
)
.

Since the conditional probability measure P sep
2 (· |B+,2

1 = 2) gives prob-

ability one to the permutation 21, it follows that c−,−2 = 2. From (2.7),

c+,−2 = 1, c+,−1 = 1 and c−,−1 = 0. Using these facts along with the fact that

s1 = 1, s2 = 2, it follows from (3.12)-(3.15) and (3.2) that

(3.16)

G−,−(t)− 4t2 = 2t(s(t)− t) + 2t(G+,−(t)− t) +G+,−(t)s(t)− ts(t)+

G+,−(t)s(t)− tG+,−(t)

and

(3.17)

G+,−(t)− 2t2 − t = 2t(G+,−(t)− t) +G−,−(t)s(t) +G+,−(t)s(t)− tG+,−(t).

The equation in (3.16) simplifies to

(3.18) G−,−(t) =
(
2s(t) + t

)
G+,−(t) + ts(t).
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Using (3.18) to substitute for G−,−(t) in (3.17), and performing some alge-

bra, we obtain

(3.19) G+,−(t) =
t(1 + s2(t))

1− t− s(t)− 2s2(t)− ts(t)
.

From (2.5), we have

(3.20) s2(t) =
1

2

(
t2 − 4t+ 1− (1− t)

√
t2 − 6t+ 1

)
.

Using (2.5) and (3.20), we obtain

(3.21) 1− t− s(t)−2s2(t)− ts(t) = −1

2

(
t2−6t+ 1)− 1

2
(t−3)

√
t2 − 6t+ 1

and

(3.22) s2(t) + 1 =
3

2
− 2t+

1

2
t2 − 1− t

2

√
t2 − 6t+ 1.

Substituting (3.21) and (3.22) in (3.19), and multiplying the numerator and

denominator by −2 yields

(3.23) G+,−(t) =
t
(
− 3 + 4t− t2 + (1− t)

√
t2 − 6t+ 1

)
t2 − 6t+ 1 + (t− 3)

√
t2 − 6t+ 1

.

Writing −3 + 4t− t2 = 1− (t− 2)2 = (1− t+ 2)(1 + t− 2) = (t− 3)(1− t),
we have

(3.24)

t
(
− 3 + 4t− t2 + (1− t)

√
t2 − 6t+ 1

)
t2 − 6t+ 1 + (t− 3)

√
t2 − 6t+ 1

=

t(1− t) t− 3 +
√
t2 − 6t+ 1

t2 − 6t+ 1 + (t− 3)
√
t2 − 6t+ 1

=
t(1− t)√
t2 − 6t+ 1

.

The formula for G+,− in (3.3) follows from (3.23) and (3.24). The formula

for G−,− in (3.3) follows from the formula in (3.3) for G+,−, (3.18) and (2.5),

along with a little algebra. �

4. Proof of Theorem 1

To prove the theorem, it suffices to prove (1.2) with Esep
n A+,−

n in place

of Esep
n An, since An(σ)− A+,−

n (σ) ∈ {0, 1, 2}, for all σ ∈ Sn. By Lemma 1,

d+,− = c−,+ = c+,−. From this and (3.4), we have Esep
n A+,−

n = c+,−n . Thus,

from (3.2), it follows that the coefficient of tn in the power series for G+,−(t)

is snE
sep
n A+,−

n . By Theorem 3 along with Proposition 2, which appears in
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the appendix, the coefficient of tn in G(t) is an−1 − an−2, where an satisfies

(7.28). Thus, we have

(4.1)

snE
sep
n A+,−

n ∼ an−1 − an−2 ∼
1

2
5
4
√
πn

1
2

(
(3− 2

√
2)−n+

1
2 − (3− 2

√
2)−n+

3
2
)

=

1

2
5
4
√
πn

1
2

(3− 2
√

2)−n+
1
2 (2
√

2− 2) =
1

2
3
4
√
πn

1
2

(3− 2
√

2)−n+
1
2 (2−

√
2).

By (7.1) in Proposition 1 in the appendix, we have

sn ∼
1

2
3
4
√
πn

3
2

(3− 2
√

2)−n+
1
2 .

Using this with (4.1), we conclude that Esep
n A+,−

n ∼ (2−
√

2)n, which com-

pletes the proof of the theorem. �

5. Generating functions related to the second moment of An

Define

(5.1)

C±,±n = Esep
n

(
(A±,±n )2|B+,n

1 = n
)
; D±,±n = Esep

n

(
(A±,±n )2|B−,n1 = n

)
.

Define the generating functions

(5.2)

H+,−(t) =

∞∑
n=1

snC
+,−
n tn;

H−,−(t) =
∞∑
n=1

snC
−,−
n tn.

We will prove the following theorem.

Theorem 4.

(5.3)

H+,−(t) = 2t2(1− t)2
(
t2 − 6t+ 1

)− 3
2 +
−5t3 + 8t2 − 3t

t− 3

(
t2 − 6t+ 1

)− 1
2 +

1

2
t2(1− t)

(
t2 − 6t+ 1

) 1
2 − 1

2
t2(1− t);

H−,−(t) = H+,−(t)− −5t3 + 8t2 − 3t

t− 3
− 1

2
t2(1− t)(t2 − 6t+ 1)+

1

2
t2(1− t)(t2 − 6t+ 1)

1
2 +

1

2
t(1− t)− 1

2
t(t2 − 6t+ 1) + 2t2(1− t)(t2 − 6t+ 1)−

1
2 .
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Proof. In several equations below, the notation Esep
n

(
(Aδ1,δ2j +Aδ3,δ4n−j )2|Bδ5,j

1 =

j, Bδ6,n−j
1 = n − j

)
is employed, where δi ∈ {+,−}, for i = 1, · · · , 6. This

indicates that Aδ1,δ2j and Aδ3,δ4n−j are independent, with Aδ1,δ2j considered un-

der the measure Esep
j (· |Bδ5,j

1 = j) and Aδ3,δ4n−j considered under the measure

Esep
n−j(· |B

δ6,n−j
1 = n− j).

We proceed in the manner of the proof of Theorem 1. Using (3.6), (2.4),

(2.2) and (5.1), and noting from (2.7) that A+,−
1 = 1, we have

Esep
n (A+,+

n )2 =
1

2
C+,+
n +

1

2
D+,+
n =

s1sn−1
sn

(1

2
E
(
(1 +A−,+n−1)

2|B+,n−1
1 = n− 1

)
+

1

2
E
(
(1 +A−,+n−1)

2|B−,n−11 = n− 1
))

+

n−1∑
j=2

1

2

sjsn−j
sn

1

2
E
(
(A+,−

j +A−,+n−j)
2|B+,j

1 = j, B+,n−j
1 = n− j

)
+

n−1∑
j=2

1

2

sjsn−j
sn

1

2
E
(
(A+,−

j +A−,+n−j)
2|B+,j

1 = j, B−,n−j1 = n− j
)

+
1

2
C+,+
n , n ≥ 3.

Expanding the terms in the equation above, cancelling the term 1
2C

+,+
n from

both sides and using the notation from (5.1) and (3.1), we have

1

2
D+,+
n =

s1sn−1
sn

(
1 + c−,+n−1 +

1

2
C−,+n−1 + d−,+n−1 +

1

2
D−,+n−1

)
+

1

4

n−1∑
j=2

sjsn−j
sn

(
C+,−
j + 2c+,−j c−,+n−j + C−,+n−j

)
+

1

4

n−1∑
j=2

sjsn−j
sn

(
C+,−
j + 2c+,−j d−,+n−j +D−,+n−j

)
,

n ≥ 3.

By Lemma 1, D+,+
n = C−,−n , D−,+n = C+,−

n , C−,+n = C+,−
n , c−,+n = c+,−n , d−,+n =

c+,−n , for all n. Making these substitutions in the equation above, multiply-

ing both sides by 2sn and recalling that s1 = 1 gives

(5.4)

snC
−,−
n = sn−1

(
2+4c+,−n−1+2C+,−

n−1
)
+
n−1∑
j=2

sjsn−j
(
C+,−
j +2c+,−j c+,−n−j+C

+,−
n−j
)
, n ≥ 3.

To derive a second recursion equation similar to the one in (5.4) we con-

sider A−,+n . Using (3.7), (2.4), (2.2) and (5.1) and noting from (2.7) that



16 ROSS G. PINSKY

A−,−1 = 0, we have

Esep
n (A−,+n )2 =

1

2
C−,+n +

1

2
D−,+n =

s1sn−1
sn

(1

2
E
(
(A−,+n−1)

2|B+,n−1
1 = n− 1

)
+

1

2
E
(
(A−,+n−1)

2|B−,n−11 = n− 1
))

+

n−1∑
j=2

1

2

sjsn−j
sn

1

2
E
(
(A−,−j +A−,+n−j)

2|B+,j
1 = j, B+,n−j

1 = n− j
)
+

n−1∑
j=2

1

2

sjsn−j
sn

1

2
E
(
(A−,−j +A−,+n−j)

2|B+,j
1 = j, B−,n−j1 = n− j

)
+

1

2
C−,+n , n ≥ 3.

Expanding the terms in the equation above, cancelling the term 1
2C
−,+
n from

both sides and using the notation from (5.1) and (3.1), we have

1

2
D−,+n =

s1sn−1
sn

(1

2
C−,+n−1 +

1

2
D−,+n−1

)
+

1

4

n−1∑
j=2

sjsn−j
sn

(
C−,−j + 2c−,−j c−,+n−j + C−,+n−j

)
+

1

4

n−1∑
j=2

sjsn−j
sn

(
C−,−j + 2c−,−j d−,+n−j +D−,+n−j

)
, n ≥ 3.

By Lemma 1, D−,+n = C+,−
n , C−,+n = C+,−

n , c−,+n = c+,−n , d−,+n = c+,−n , for all

n. Making these substitutions in the equation above, multiplying both sides

by 2sn and recalling that s1 = 1 gives

(5.5) snC
+,−
n = 2sn−1C

+,−
n−1 +

n−1∑
j=2

sjsn−j
(
C−,−j +2c−,−j c+,−n−j+C+,−

n−j
)
, n ≥ 3.

Multiplying (5.4) and (5.5) by tn and summing over n gives

(5.6)
∞∑
n=3

snC
−,−
n tn = 2t

∞∑
n=3

sn−1t
n−1 + 4t

∞∑
n=3

sn−1c
+,−
n−1t

n−1 + 2t
∞∑
n=3

sn−1C
+,−
n−1t

n−1+

∞∑
n=3

( n−1∑
j=2

sjsn−jC
+,−
j

)
tn +

∞∑
n=3

( n−1∑
j=2

sjsn−jC
+,−
n−j
)
tn + 2

∞∑
n=3

( n−1∑
j=2

sjsn−jc
+,−
j c+,−n−j

)
tn

and

(5.7)

∞∑
n=3

snC
+,−
n tn = 2t

∞∑
n=3

sn−1C
+,−
n−1t

n−1 +

∞∑
n=3

( n−1∑
j=2

sjsn−jC
−,−
j

)
tn+

∞∑
n=3

( n−1∑
j=2

sjsn−jC
+,−
n−j
)
tn + 2

∞∑
n=3

( n−1∑
j=2

sjsn−jc
−,−
j c+,−n−j

)
tn.
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We have s2 = 2. By (2.7), C+,−
1 = 1 and C−,−1 = 0. By the explanation

in the paragraph after (3.15), we have C−,−2 = 4 and C+,−
2 = 1. The first

and second double sums on the second line of (5.6) satisfy (3.13) and (3.14)

respectively with c+,−· replaced by C+,−
· . The third double sum on the

second line of (5.6) satisfies similarly,

∞∑
n=3

( n−1∑
j=2

sjsn−jc
+,−
j c+,−n−j

)
tn =

( ∞∑
n=1

snc
+,−
n tn

)2 − t ∞∑
n=2

sn−1c
+,−
n−1t

n−1.

The double sum on the first line of (5.7) satisfies (3.15) with with c−,−·

replaced by C−,−· and the first double sum on the second line of (5.7) satisfies

(3.14) with c+,−· replaced by C+,−
· . The second double sum on the second

line of (5.7) satisfies similarly

∞∑
n=3

( n−1∑
j=2

sjsn−jc
−,−
j c+,−n−j

)
tn =

( ∞∑
n=1

snc
−,−
n tn

)( ∞∑
n=1

snc
+,−
n tn

)
.

Using the above facts with (5.2), we obtain from (5.6) and (5.7)

(5.8)

H−,−(t)− 8t2 = 2t(s(t)− t) + 4t
(
G+,−(t)− t

)
+ 2t

(
H+,−(t)− t

)
+

s(t)H+,−(t)− ts(t) + s(t)H+,−(t)− tH+,−(t) + 2(G+,−(t))2 − 2tG+,−(t)

and

(5.9)
H+,−(t)− 2t2 − t = 2t

(
H+,−(t)− t

)
+ s(t)H−,−(t)+

s(t)H+,−(t)− tH+,−(t) + 2G−,−(t)G+,−(t).

The equation in (5.8) simplifies to

(5.10) H−,−(t) =
(
2s(t) + t

)
H+,−(t) + ts(t) + 2tG+,−(t) + 2(G+,−(t))2.

From (2.5), 2s(t) + t = 1 −
√
t2 − 6t+ 1. Using this, the formula for H−,−

in (5.3) follows from (5.10) after substituting for G+,− from (3.3) and per-

forming some algebra.

Using (5.10) to substitute for H−,−(t) in (5.9), and then solving for

H+,−(t), one obtains after some algebra,

(5.11)

H+,−(t) =
t+ ts2(t) + 2G−,−(t)G+,−(t) + 2ts(t)G+,−(t) + 2s(t)(G+,−(t))2

1− t− s(t)− 2s2(t)− ts(t)
.
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Substituting for G+,−(t) and G−,−(t) from (3.3), substituting for s(t) from

(2.5) and substituting for s2(t) from (3.20), and performing a lot of algebra,

one finds that the numerator in (5.11) satifies

(5.12)

t+ ts2(t) + 2G−,−(t)G+,−(t) + 2ts(t)G+,−(t) + 2s(t)(G+,−(t))2 =

5

2
t3 − 4t2 +

3

2
t− t(1− t)

2

√
t2 − 6t+ 1− t2(1− t)2√

t2 − 6t+ 1
− t2(1− t)2(t− 3)

t2 − 6t+ 1
.

Let

(5.13) X =
√
t2 − 6t+ 1

and Y = t − 3. The denominator of H+,−(t) in (5.11) was calculated in

(3.21), and is equal to −1
2(X2 + Y X). We have

(5.14)
1

X2 + Y X
=

1

Y
(

1

X
− 1

X + Y
) =

1

Y
(

1

X
+

Y −X
X2 − Y 2

) =
1

t− 3

( 1√
t2 − 6t+ 1

+
t− 3−

√
t2 − 6t+ 1

t2 − 6t+ 1− (t− 3)2

)
=

1

t− 3

( 1√
t2 − 6t+ 1

− t− 3−
√
t2 − 6t+ 1

8

)
=

1

(t− 3)
√
t2 − 6t+ 1

− 1

8
+

√
t2 − 6t+ 1

8(t− 3)
.

From (5.11)–(5.14), we obtain

(5.15)

H+,−(t) = −2
( 1

(t− 3)
√
t2 − 6t+ 1

− 1

8
+

√
t2 − 6t+ 1

8(t− 3)

)
×

(
(
5

2
t3 − 4t2 +

3

2
t)− t(1− t)

2

√
t2 − 6t+ 1− t2(1− t)2√

t2 − 6t+ 1
− t2(1− t)2(t− 3)

t2 − 6t+ 1

)
.

Denote the three expressions in the first parenthetical factor in (5.15) by

γi, i = 1, 2, 3, and denote the four expressions in the second parenthetical

factor in (5.15) by βj , j = 1, 2, 3, 4. We multiply out the right hand side

of (5.15) in the order of the following double sum: −2
∑4

j=1

∑3
i=1 γiβj . We

have γ2β3 + γ3β4 = 0. Also, after some algebra, one finds that
(
γ1β3 +

γ2β4
)

= t2(1−t)2
8(t−3) , which cancels with the term γ3β3. Writing down the other

seven terms in the order of the double sum above, and recalling the definition
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of X in (5.13), we obtain

(5.16)

H+,−(t) =
−5t3 + 8t2 − 3t

t− 3

1

X
+

5t3 − 8t2 + 3t

8
+
−5t3 + 8t2 − 3t

8(t− 3)
X+

t(1− t)
t− 3

− t(1− t)
8

X +
t(1− t)
8(t− 3)

(t2 − 6t+ 1) + 2t2(1− t)2 1

X3
.

We have

(5.17)

t(1− t)
t− 3

+
t(1− t)
8(t− 3)

(t2 − 6t+ 1) +
5t3 − 8t2 + 3t

8
=

1

8
t(1− t)(t− 3)− 1

8
(−3t+ 8t2 − 5t3) = −1

2
t2(1− t)

and

(5.18)
−5t3 + 8t2 − 3t

8(t− 3)
− t(1− t)

8
=

1

2
t2(1− t).

Now (5.3) for H+,−(t) follows from (5.16)-(5.18). �

6. Proof of Theorem 2

We first proof part (i). Then we make minor additions to that proof

to obtain part (ii). By (1.1), it suffices to consider A+,−
n for part (i). By

(2.2) and (5.1), we have Esep
n (A+,−

n )2 = 1
2C

+,−
n + 1

2D
+,−
n , and by Lemma 1,

D+,−
n = C−,+n = C+,−

n . Therefore, Esep
n (A+,−

n )2 = C+,−
n . Thus tn[H+,−],

the coefficient of tn in the power series expansion of H+,−, is equal to

snE
sep
n (A+,−

n )2. As noted in section 4, tn[G+,−], the coefficient of tn in

the power series expansion of G+,−, is equal to snE
sep
n A+,−

n . Thus

(6.1)

Varsepn (A+,−
n ) = Esep

n (A+,−
n )2 −

(
Esep
n A+,−

n

)2
=
tn[H+,−]

sn
−
( tn[G+,−]

sn

)2
.

Recall that r1 = 3− 2
√

2 denotes the smaller of the two roots of t2− 6t+ 1.

For some of the calculations below, it will be convenient to write r1 instead

of 3− 2
√

2 at certain points.

We first consider the asymptotic behavior of Esep
n A+,−

n = tn[G+,−]
sn

. From

3.3 in Theorem 3 and from Proposition 2 in the appendix, we have

(6.2) tn[G+,−] = an−1 − an−2,
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where an satisfies (7.29). From (7.29),

(6.3)

an−i =
(3− 2

√
2)−n−

1
2

√
π

( 1

2
5
4

(3− 2
√

2)i

(n− i)
1
2

+
3− 4

√
2

32 · 2
3
4

(3− 2
√

2)i

(n− i)
3
2

+ o(
1

n
3
2

)
)
, i = 1, 2.

Thus,

(6.4)
2

3
4n

3
2an−i =

(3− 2
√

2)−n−
1
2

√
π

((3− 2
√

2)i√
2

n(
n

n− i
)
1
2 +

(3− 4
√

2)(3− 2
√

2)i

32
+ o(1)

)
, i = 1, 2.

Using (6.2) and (6.4), along with (7.2) in the appendix, which gives the

asymptotic behavior of sn, we have

(6.5)

Esep
n A+,−

n =
tn[G+,−]

sn
=

1

3− 2
√

2

(
1 +

24− 9
√

2

32

1

n
+ o(

1

n
)
)−1
×

2∑
i=1

(−1)i−1
((3− 2

√
2)i√

2
n(

n

n− i
)
1
2 +

(3− 4
√

2)(3− 2
√

2)i

32
+ o(1)

)
=

1

3− 2
√

2

(
1− 24− 9

√
2

32

1

n
+ o(

1

n
)
)
×

2∑
i=1

(−1)i−1
((3− 2

√
2)i√

2
n(1 +

i

2n
) +

(3− 4
√

2)(3− 2
√

2)i

32
+ o(1)

)
=

(2−
√

2)n− 1

4
(3− 2

√
2) + o(1),

where the last equality follows after some algebra. This proves (1.3). From

(6.5) we obtain

(6.6)
(
Esep
n A+,−

n

)2
=
( tn[G+,−]

sn

)2
= (6− 4

√
2)n2 − 10− 7

√
2

2
n+ o(n).

Now we turn to the asymptotic behavior of Esep
n (A+,−

n )2 = tn[H+,−]
sn

.

Propositions 2 and 3 in the appendix give the asymptotic behavior of the

coefficient of tn in
(
t2 − 6t + 1

)− 1
2 and in

(
t2 − 6t + 1

)− 3
2 respectively,

and Proposition 1 gives the asymptotic behavior of the coefficient of tn in

−1
2

(
t2−6t+1

) 1
2 . By these propositions and (5.3) in Theorem 4, which gives

the formula for H+,−(t), the leading order contribution to the coefficient of

tn in H+,−(t) comes from the leading order contribution to the coefficient of

tn in the term 2t2(1−t)2
(
t2−6t+1

)− 3
2 , while the next order contribution to
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the coefficient of tn in H+,−(t) comes from the next order contribution to the

coefficient of tn in 2t2(1− t)2
(
t2− 6t+ 1

)− 3
2 and also from the leading order

contribution to the coefficient of tn in the term −5t3+8t2−3t
t−3

(
t2 − 6t+ 1

)− 1
2 .

We begin with finding the leading order contribution in the coefficient

of tn in −5t3+8t2−3t
t−3

(
t2 − 6t + 1

)− 1
2 . Recalling from Proposition 2 that an

denotes the coefficient of tn in the power series for (t2− 6t+ 1)−
1
2 , we write

(6.7)

1

(t− 3)
√
t2 − 6t+ 1

= −1

3

( ∞∑
n=0

(
t

3
)n
)( ∞∑

n=0

ant
n
)

= −1

3

∞∑
n=0

( n∑
j=0

(
1

3
)jan−j

)
tn.

We write

(6.8)
n∑
j=0

(
1

3
)jan−j =

C logn∑
j=0

(
1

3
)jan−j +

n∑
j=C logn+1

(
1

3
)jan−j ,

where C is chosen so that

(6.9)

∞∑
C logn+1

(
3− 2

√
2

3
)j = o(n−

1
2 ).

Considering the asymptotic behavior of an in (7.28) in the appendix, we

write

(6.10)

C logn∑
j=0

(
1

3
)jan−j =

(3− 2
√

2)−n−
1
2

2
5
4
√
πn

1
2

C logn∑
j=0

(
3− 2

√
2

3
)j+

(3− 2
√

2)−n−
1
2

2
5
4
√
π

C logn∑
j=0

(
3− 2

√
2

3
)j
( 1

(n− j)
1
2

− 1

n
1
2

)
+

C logn∑
j=0

(
1

3
)j
(
an−j −

(3− 2
√

2)−n+j−
1
2

2
5
4
√
π(n− j)

1
2

)
.

From (6.10) and (7.29) in the appendix, and the equality
∑∞

j=0(
3−2
√
2

3 )j =
3

2
√
2
, it follows that

(6.11)

C logn∑
j=0

(
1

3
)jan−j =

(3− 2
√

2)−n−
1
2

2
5
4
√
πn

1
2

( 3

2
√

2
+ o(1)

)
.
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From (7.28), there exits a C1 > 0 such that ak ≤ C1
(3−2

√
2)−k

k
1
2

, k ∈ N. Using

this with (6.9), we obtain

(6.12)
n∑

j=C logn+1

(
1

3
)jan−j ≤ C1(3−2

√
2)−n

∞∑
j=C logn+1

(
3− 2

√
2

3
)j = o(

(3− 2
√

2)−n

n
1
2

).

From (6.7), (6.8), (6.11) and (6.12), we conclude that the coefficient−1
3

∑n
j=0(

1
3)jan−j

of tn in the power series for 1
(t−3)

√
t2−6t+1

satisfies

(6.13) −1

3

n∑
j=0

(
1

3
)jan−j ∼ −

1

3

(3− 2
√

2)−n−
1
2

2
5
4
√
πn

1
2

3

2
√

2
= −(3− 2

√
2)−n−

1
2

4 · 2
3
4
√
πn

1
2

.

From the above calculations, we conclude that

(6.14)

the leading order contribution in the coefficient of tn in

−3t+ 8t2 − 5t3

t− 3

(
t2 − 6t+ 1

)− 1
2 is

(3− 2
√

2)−n−
1
2

4 · 2
3
4
√
π

( 3r1

(n− 1)
1
2

− 8r21

(n− 2)
1
2

+
5r31

(n− 3)
1
2

)
=

(3− 2
√

2)−n+
1
2

4 · 2
3
4
√
π

( 3

(n− 1)
1
2

− 8r1

(n− 2)
1
2

+
5r21

(n− 3)
1
2

)
:= I1.

We now consider 2t2(1− t)2
(
t2 − 6t+ 1

)− 3
2 . Writing 2t2(1− t)2 = 2t2 −

4t3 + 2t4, it follows from Proposition 3 that the two leading orders in the

contribution to the coefficient of tn in 2t2(1−t)2
(
t2−6t+1

)− 3
2 are contained

in 2αn−2 − 4αn−3 + 2αn−4, where αn satisfies (7.33). Thus, from (7.33),

(6.15)

the leading order contribution to the coefficient of tn in

2t2(1− t)2
(
t2 − 6t+ 1

)− 3
2 is given by

(3− 2
√

2)−n+
1
2

4 · 2
3
4
√
π

(
2(n− 2)

1
2 − 4r1(n− 3)

1
2 + 2r21(n− 4)

1
2

)
:= I2,

and

(6.16)

the second leading order of contribution to the coefficient of tn in

2t2(1− t)2
(
t2 − 6t+ 1

)− 3
2 is given by

(24− 9
√

2)(3− 2
√

2)−n+
1
2

128 · 2
3
4
√
π

(
2(n− 2)−

1
2 − 4r1(n− 3)−

1
2 + 2r21(n− 4)−

1
2

)
:= I3.
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By (7.2) in the appendix,

(6.17)

the first two leading order terms in sn are

1√
π

(3− 2
√

2)−n+
1
2

( 1

2
3
4

n−
3
2 +

12
√

2− 9

2
1
4 · 32

n−
5
2

)
:= I4.

From (6.14)-(6.17), we conclude that

(6.18)

the first two leading order terms in Esep
n (A+,−

n )2 =
tn[H+,−]

sn

are contained in
I1 + I2 + I3

I4
and are of the form An2 +Bn.

From (6.14) and (6.17),

(6.19)

I1
I4

=

1

4·2
3
4

(
3

(n−1)
1
2
− 8r1

(n−2)
1
2

+
5r21

(n−3)
1
2

)
1

2
3
4
n−

3
2 + 12

√
2−9

2
1
4 ·32

n−
5
2

=

n
4

(
3( n
n−1)

1
2 − 8r1(

n
n−2)

1
2 + 5r21( n

n−3)
1
2

)
1 + (12

√
2−9)

√
2

32
1
n

=
3− 8r1 + 5r21

4
n+O(1) =

3− 8(3− 2
√

2) + 5(3− 2
√

2)2

4
n+ o(n) = (16− 11

√
2)n+ o(n).

From (6.15) and (6.17),

(6.20)

I2
I4

=

1

4·2
3
4

(
2(n− 2)

1
2 − 4r1(n− 3)

1
2 + 2r21(n− 4)

1
2

)
1

2
3
4
n−

3
2 + 12

√
2−9

2
1
4 ·32

n−
5
2

=

1
2(n−2n )

1
2 − r1(n−3n )

1
2 + 1

2r
2
1(n−4n )

1
2

1 + (24−9
√
2)

32n

n2 =

(1

2
(1− 1

n
)− r1(1−

3

2n
) +

1

2
r21(1− 2

n
) +O(

1

n2
)
)(

1 +
9
√

2− 24

32n
+O(

1

n2
)
)
n2 =

(6− 4
√

2)n2 + (−79

4
+

219

16

√
2)n+O(1).
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From (6.16) and (6.17),

(6.21)

I3
I4

=

24−9
√
2

128·2
3
4

(
2(n− 2)−

1
2 − 4r1(n− 3)−

1
2 + 2r21(n− 4)−

1
2

)
1

2
3
4
n−

3
2 + 12

√
2−9

32·2
1
4
n−

5
2

=

24−9
√
2

64

(
( n
n−2)

1
2 − 2r1(

n
n−3)

1
2 + r21( n

n−4)
1
2

)
1 + 24−9

√
2

32n

n =

24− 9
√

2

64

(
1− 2r1 + r21

)
n+O(1) =

24− 9
√

2

64
(r1 − 1)2n+O(1) =

(
24− 9

√
2

64
)(2− 2

√
2)2n+O(1) =

(27

4
− 75

16

√
2
)
n+O(1).

From (6.18)-(6.21) we conclude that

(6.22)

Esep
n (A+,−

n )2 =
tn[H+,−]

sn
=

(6− 4
√

2)n2 +
(

16− 11
√

2− 79

4
+

219

16

√
2 +

27

4
− 75

16

√
2
)
n+O(1) =

(6− 4
√

2)n2 + (3− 2
√

2)n+O(1).

Using (6.22) with (6.6) and (6.1), we conclude that

(6.23) Varsepn (A+,−
n ) = (3− 2

√
2 +

10− 7
√

2

2
)n =

16− 11
√

2

2
n ≈ 0.444n,

which proves (1.4).

We now consider part (ii). By (1.1), it suffices to consider A−,−n . We first

consider the asymptotic behavior of Esep
n A−,−n = tn[G−,−]

sn
. From (3.3), we

have

(6.24) tn[G−,−] = tn[G+,−]− tn[
1

2
t(t2 − 6t+ 1)

1
2 ], n ≥ 3.

By (7.3) and (7.15) in the appendix, we have

(6.25) tn[
1

2
t(t2 − 6t+ 1)

1
2 ] =

1

2
bn−1 ∼ −

1

2
3
4
√
π

(3− 2
√

2)−n+
3
2

1

n
3
2

.

From (6.25) and (7.1) in the appendix, we obtain

(6.26) −
tn[12 t(t

2 − 6t+ 1)
1
2 ]

sn
= 3− 2

√
2 + o(1).

From (6.24), (6.5) and (6.26), we conclude that

(6.27) Esep
n A−,−n =

tn[G−,−]

sn
= (2−

√
2)n+

3

4
(3− 2

√
2) + o(1),
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which proves (1.5).

We now turn to the variance. We have

(6.28)

Varsepn (A−,−n ) = Esep
n (A−,−n )2 −

(
Esep
n A−,−n

)2
=
tn[H−,−]

sn
−
( tn[G−,−]

sn

)2
.

From (6.27), we have

(6.29) (Esep
n A−,−n )2 =

( tn[G−,−]

sn

)2
= (6− 4

√
2)n2 +

30− 21
√

2

2
n+ o(n).

From (5.3), we have

(6.30)

tn[H−,−] = tn[H+,−] + tn[2t2(1− t)(t2 − 6t+ 1)−
1
2 ] + lower order terms.

From Proposition 2 in the appendix, tn[2t2(1− t)(t2−6t+1)−
1
2 ] = 2(an−2−

an−3). Thus, using (7.28) from the appendix, or alternatively, using (4.1)

with n replaced by n− 1, we have

(6.31)

tn[2t2(1−t)(t2−6t+1)−
1
2 ] = 2(an−2−an−3) ∼

2
1
4

√
πn

1
2

(3−2
√

2)−n+
3
2 (2−

√
2).

From (6.31) and (7.1), we obtain

(6.32)
tn[2t2(1− t)(t2 − 6t+ 1)−

1
2 ]

sn
∼ 2(3−2

√
2)(2−

√
2)n = (20−14

√
2)n.

From (6.30), (6.32) and (6.22), we obtain

(6.33)

tn[H−,−]

sn
= (6− 4

√
2)n2 + (3− 2

√
2)n+ (20− 14

√
2)n+ o(n) =

(6− 4
√

2)n2 + (23− 16
√

2)n+ o(n).

From (6.28), (6.29) and (6.33), we conclude that

Varsepn (A−,−n ) ∼ (23− 16
√

2)n− 30− 21
√

2

2
n =

16− 11
√

2

2
n,

which proves (1.6). �

7. Appendix

Proposition 1.

(7.1) sn ∼
1

2
3
4
√
π

(3− 2
√

2)−n+
1
2 n−

3
2 .
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With more precision,

(7.2) sn =
1√
π

(3− 2
√

2)−n+
1
2

( 1

2
3
4

n−
3
2 +

12
√

2− 9

2
1
4 · 32

n−
5
2 + o(n−

5
2 )
)
.

Proof. Denote the two roots of t2 − 6t+ 1 by

r1 = 3− 2
√

2, r2 = 3 + 2
√

2.

Define the sequence {bn}∞n=0 by

(7.3)
√
t2 − 6t+ 1 =

∞∑
n=0

bnt
n, |t| < 3− 2

√
2.

Write

(7.4)
√
t2 − 6t+ 1 =

√
1− t

r1

√
1− t

r2
.

The Taylor series for
√

1− x is given by

(7.5)
√

1− x = 1−
∞∑
n=1

1

2n− 1

(2n)!

(n!)222n
xn.

From (7.4) and (7.5), we have

(7.6)√
t2 − 6t+ 1 = 1−

∞∑
n=1

1

2n− 1

(2n)!

(n!)222n
1

rn1
tn −

∞∑
n=1

1

2n− 1

(2n)!

(n!)222n
1

rn2
tn+

∞∑
n=2

( n−1∑
j=1

1

2(n− j)− 1

(2n− 2j)!

((n− j)!)222(n−j)
1

rn−j1

1

2j − 1

(2j)!

(j!)222j
1

rj2

)
tn.

We write the coefficient of tn in the second line of (7.6) as

(7.7)

n−1∑
j=1

1

2(n− j)− 1

(2n− 2j)!

((n− j)!)222(n−j)
1

rn−j1

1

2j − 1

(2j)!

(j!)222j
1

rj2
=

1

rn1

n−1∑
j=1

1

2(n− j)− 1

(2n− 2j)!

((n− j)!)222(n−j)
1

2j − 1

(2j)!

(j!)222j
(
r1
r2

)j .

From (7.5) we have

(7.8)
∞∑
j=1

1

2j − 1

(2j)!

(j!)222j
(
r1
r2

)j = 1−
√

1− r1
r2

= 1− 2
5
4√

3 + 2
√

2
= 1− 2

5
4

√
3− 2

√
2.
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From Stirling’s formula, n! ∼ nne−n
√

2πn, one obtains the well-known as-

ymptotic formula

(7.9)
(2n)!

(n!)222n
∼ 1√

πn
.

By (7.9), the expression 1
2j−1

(2j)!
(j!)222j

multiplying ( r1r2 )j in (7.8) is bounded in

j. Consequently, for some C > 0,

(7.10)
∞∑
j=M

1

2j − 1

(2j)!

(j!)222j
(
r1
r2

)j ≤ C
∞∑
j=M

(
r1
r2

)j , for any M ∈ N.

From this we conclude that

(7.11)

for any l ∈ N, there exists a constant Cl > 0 such that if Mn = [Cl log n] ∈ N, then

∞∑
j=Mn+1

1

2j − 1

(2j)!

(j!)222j
(
r1
r2

)j ≤ n−l.

By (7.9),

(7.12)
1

2(n− j)− 1

(2n− 2j)!

((n− j)!)222(n−j)
∼ 1

2
√
π

1

n
3
2

, uniformly over j ∈ {1, · · · , [Cl log n]}

as n→∞,

From (7.7), (7.8), (7.11) and (7.12), it follows that the coefficient of tn in

the second line of (7.6) satisfies

(7.13)

n−1∑
j=1

1

2(n− j)− 1

(2n− 2j)!

((n− j)!)222(n−j)
1

rn−j1

1

2j − 1

(2j)!

(j!)222j
1

rj2
∼

(
1− 2

5
4

√
3− 2

√
2
) 1

2
√
π

1

n
3
2

1

rn1
.

From (7.9) or (7.12), the coefficient of tn in the first sum on the first line

of (7.6) satisfies

(7.14)
1

2n− 1

(2n)!

(n!)222n
1

rn1
∼ 1

2
√
π

1

n
3
2

1

rn1
.

Since r2 > r1, the coefficient of tn in the second sum on the first line of (7.6)

is exponentially smaller than that of the first sum on the first line of (7.6).

Using this last fact with (7.3), (7.6), (7.13) and (7.14), it follows that

(7.15) bn ∼ −2
1
4

1√
π

(3− 2
√

2)−n+
1
2

1

n
3
2

.
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Now (7.1) follows from (7.15), (7.3) and (2.5).

We now turn to (7.2). A refined form of Stirling’s formula gives n! =

nne−n
√

2πn
(
1 + 1

12n +O( 1
n2 )
)

. Thus, recalling (7.9), we obtain

(7.16)
(2n)!

(n!)222n
=

1√
πn

1 + 1
24n +O( 1

n2 )(
1 + 1

12n +O( 1
n2 )
)2 =

1√
πn

(
1− 1

8n
+O(

1

n2
)
)
.

Thus, the coefficient of tn in the first sum on the first line of (7.6) satisfies

(7.17)

1

2n− 1

(2n)!

(n!)222n
1

rn1
=

2n

2n− 1

1

2
√
π

1

n
3
2

1

rn1

(
1− 1

8n
+O(

1

n2
)
)

=

(
1 +

1

2n
+O(

1

n2
)
) 1

2
√
π

1

n
3
2

1

rn1

(
1− 1

8n
+O(

1

n2
)
)

=

1

2
√
π

1

n
3
2

1

rn1

(
1 +

3

8n
+O(

1

n2
)
)
.

As before, we don’t need to consider the coefficient of tn in the second sum

on the first line of (7.6) since it is exponentially smaller than that of the

first sum on the right hand side of (7.6).

Now consider the coefficient of tn in the second line of (7.6) as given by

the right hand side of (7.7). We write this as

(7.18)

1

rn1

n−1∑
j=1

1

2(n− j)− 1

(2n− 2j)!

((n− j)!)222(n−j)
1

2j − 1

(2j)!

(j!)222j
(
r1
r2

)j =

1

rn1

1

2n− 1

(2n)!

(n!)222n

n−1∑
j=1

1

2j − 1

(2j)!

(j!)222j
(
r1
r2

)j+

1

rn1

Mn∑
j=1

( 1

2(n− j)− 1

(2n− 2j)!

((n− j)!)222(n−j)
− 1

2n− 1

(2n)!

(n!)222n

) 1

2j − 1

(2j)!

(j!)222j
(
r1
r2

)j+

1

rn1

n−1∑
j=Mn

( 1

2(n− j)− 1

(2n− 2j)!

((n− j)!)222(n−j)
− 1

2n− 1

(2n)!

(n!)222n

) 1

2j − 1

(2j)!

(j!)222j
(
r1
r2

)j :=

1

rn1

(
In + IIn + IIIn

)
,
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where Mn = [Cl log n] with Cl is as in (7.11) and l > 5
2 . Using (7.8), (7.10)

and (7.17), we conclude that

(7.19)

In =
(
1− 2

5
4

√
3− 2

√
2 +Rn

) 1

2
√
π

1

n
3
2

(
1 +

3

8n
+O(

1

n2
)
)

=

(
1− 2

5
4

√
3− 2

√
2
) 1

2
√
π

1

n
3
2

(
1 +

3

8n
+O(

1

n2
)
)
,

where Rn decays exponentially.

By the same reasoning that led to (7.10), for some C > 0, |IIIn| ≤
C
∑∞

j=Mn
( r1r2 )j . Thus,

(7.20)

for any l ∈ N, there exists a constant Cl > 0 such that if we choose

Mn = [Cl log n], then |IIIn| ≤ n−l.

(Without loss of generality, we can choose the same constant Cl in (7.11)

and (7.20).) As above, we choose l > 5
2 .

Consider now IIn. We write

(7.21)
1

2(n− j)− 1

(2n− 2j)!

((n− j)!)222(n−j)
− 1

2n− 1

(2n)!

(n!)222n
=

1

2n− 1

(2n)!

(n!)222n
(Bn−j
Bn

− 1
)
,

where Bk = 1
2k−1

(2k)!
(k!)222k

. By (7.17),

(7.22)

Bn−j
Bn

=

1
2
√
π

1

(n−j)
3
2

(
1 + 3

8(n−j) +O( 1
n2 )
)

1
2
√
π

1

n
3
2

(
1 + 3

8n +O( 1
n2 )
) = (

n

n− j
)
3
2
(
1 +O(

log n

n2
)
)

=

(
1 +

3

2

j

n− j
+O(

1

n2
)
)(

1 +O(
log n

n2
)
)

= 1 +
3

2

j

n
+O(

log n

n2
),

uniformly over j ∈ {1, · · · , Cl log n}.

Substituting (7.21) and (7.22) in the formula for IIn in (7.18), we have

(7.23) IIn =
1

2n− 1

(2n)!

(n!)222n

Cl logn∑
j=1

(3

2

j

n
+O(

log n

n2
)
) 1

2j − 1

(2j)!

(j!)222j
(
r1
r2

)j .

We write

(7.24)

∞∑
j=1

(3j

2

1

2j − 1

(2j)!

(j!)222j
(
r1
r2

)j =
[3
2
x
( ∞∑
j=1

1

2j − 1

(2j)!

(j!)222j
xj
)]′|x= r1

r2

=

3

2
x
(
1− (1− x)

1
2
)′|x= r1

r2

=
3

4

r1
r2

(1− r1
r2

)−
1
2 =

3

8

r
3
2
1

2
1
4

,
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where we have used the fact that r2 = 1
r1

. Using (7.11) with (7.24), we have

(7.25)

Cl logn∑
j=1

(3

2

j

n

1

2j − 1

(2j)!

(j!)222j
(
r1
r2

)j =
1

n

(3

8

r
3
2
1

2
1
4

+O(n−l)
)
.

From (7.17), (7.23) and (7.25), we conclude that

(7.26)
IIn =

1

2
√
π

1

n
3
2

(
1 +

3

8n
+O(

1

n2
)
)(3

8

r
3
2
1

2
1
4

1

n
+O(

log n

n2
)
)

=

3

16
√
π2

1
4

r
3
2
1

1

n
5
2

+O(
1

n
7
2

).

Now from (7.6), (7.17)-(7.20) and (7.26), we have

(7.27)

bn =
(3− 2

√
2)−n+

1
2

√
π

(
− 2

1
4

n
3
2

− 3

8

2
1
4

n
5
2

+
3

16

3− 2
√

2

2
1
4

1

n
5
2

+ o(
1

n
5
2

)
)

=

(3− 2
√

2)−n+
1
2

√
π

(
− 2

1
4

n
3
2

+
9− 12

√
2

16 · 2
1
4

1

n
5
2

+ o(
1

n
5
2

)
)
.

Now (7.2) follows from (7.27) and (2.5). �

Proposition 2. Let {an}∞n=0 denote the coefficients of the power series about

zero of 1√
t2−6t+1

: 1√
t2−6t+1

=
∑∞

n=0 ant
n. Then

(7.28) an ∼
1

2
5
4
√
πn

1
2

(3− 2
√

2)−n−
1
2 .

With more precision,

(7.29) an =
(3− 2

√
2)−n−

1
2

√
π

( 1

2
5
4

1

n
1
2

+
3− 4

√
2

32 · 2
3
4

1

n
3
2

+ o(
1

n
3
2

)
)
.

Proof. We will show that (7.29) follows readily from (7.33) in Proposition 3

below. Of course (7.28) is contained in (7.29). However, we note that the

proof of (7.28) is considerably shorter than the proof of (7.29), just as the

proof of (7.1) was considerably shorter than that of (7.2). As was mentioned

at the end of section 1, for the proof of Theorem 1 the only results we use

from the appendix are (7.1) and (7.28).

Differentiating gives

∞∑
n=1

nant
n−1 = (3− t)(t2 − 6t+ 1)−

3
2 = (3− t)

∞∑
n=0

αnt
n,
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where αn is as in Proposition 3. From this we obtain

(7.30) an =
3

n
αn−1 −

1

n
αn−2.

Thus, from (7.33), we have

(7.31)

αn =
(3− 2

√
2)−n−

1
2

√
π

( 3

4 · 2
3
4

(n− 1)
1
2

n
+

3(24− 9
√

2)

128 · 2
3
4

1

(n− 1)
1
2n

)
−

(3− 2
√

2)−n−
1
2

√
π

(3− 2
√

2

4 · 2
3
4

(n− 2)
1
2

n
+

(3− 2
√

2)(24− 9
√

2)

128 · 2
3
4

1

(n− 2)
1
2n

)
+

o
(

(3− 2
√

2)−n
1

n
3
2

)
.

Writing

(n− i)
1
2

n
=
n

1
2 (1− i

n)
1
2

n
= n−

1
2 − i

2
n−

3
2 + o(n−

3
2 ), i = 1, 2,

and

1

(n− i)
1
2n

=
1

n
3
2

+ o(
1

n
3
2

), i = 1, 2,

and substituting in (7.31), we obtain

(7.32)

an =
(3− 2

√
2)−n−

1
2

√
π

( 3

4 · 2
3
4

− 3− 2
√

2

4 · 2
3
4

)
n−

1
2 +

(3− 2
√

2)−n−
1
2

√
π

(
− 1

2

3

4 · 2
3
4

+
3(24− 9

√
2)

128 · 2
3
4

+
3− 2

√
2

4 · 2
3
4

− (3− 2
√

2)(24− 9
√

2)

128 · 2
3
4

)
n−

3
2 +

o
(

(3− 2
√

2)−n
1

n
3
2

)
=

(3− 2
√

2)−n−
1
2

√
π

( 1

2
5
4

1

n
1
2

+
3− 4

√
2

32 · 2
3
4

1

n
3
2

+ o(
1

n
3
2

)
)
,

which is (7.29).

�

Proposition 3. Let {αn}∞n=0 denote the coefficients of the power series

about zero of 1

(t2−6t+1)
3
2

: 1

(t2−6t+1)
3
2

=
∑∞

n=0 αnt
n. Then

(7.33) αn =
(3− 2

√
2)−n−

3
2

√
π

( 1

4 · 2
3
4

n
1
2 +

24− 9
√

2

128 · 2
3
4

1

n
1
2

+ o(
1

n
1
2

)
)
.
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Proof. The proof is similar to the proof of (7.2) in Proposition 1. Differen-

tiating (7.5) twice, one obtains

(7.34) (1− x)−
3
2 =

∞∑
n=0

(2n+ 1)!

(n!)222n
xn.

Let r1, r2 be the roots of t2 − 6t + 1 as in the proof of Proposition 1. By

(7.4) and (7.34), we have

(7.35)

1

(t2 − 6t+ 1)
3
2

= 1 +

∞∑
n=1

(2n+ 1)!

(n!)222n
1

rn1
tn +

∞∑
n=1

(2n+ 1)!

(n!)222n
1

rn2
tn+

∞∑
n=2

( n−1∑
j=1

(2n− 2j + 1)!

((n− j)!)222(n−j)
1

rn−j1

(2j + 1)!

(j!)222j
1

rj2

)
tn.

The coefficient of tn in the second term on the right hand side of (7.35)

is exponentially smaller that of the first term, so we can ignore it. Using

(7.16), we have

(7.36)

(2n+ 1)!

(n!)222n
= (2n+ 1)

1√
πn

(
1− 1

8n
+O(

1

n2
)
)

= (1 +
1

2n
)
2n

1
2

√
π

(
1− 1

8n
+O(

1

n2
)
)

=

2n
1
2

√
π

(
1 +

3

8n
+O(

1

n2
)
)
.

So the coefficient of tn in the first term on the right hand side of (7.35) is

given by

(7.37)
2n

1
2

√
πrn1

(
1 +

3

8n
+O(

1

n2
)
)
.

We split the coefficient of tn in the second line of (7.35) into three parts,

In, IIn, IIIn, just as we did for the coefficient of tn in the second line of (7.6)
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in (7.18). Thus, we write this term as

(7.38)

n−1∑
j=1

(2n− 2j + 1)!

((n− j)!)222(n−j)
1

rn−j1

(2j + 1)!

(j!)222j
1

rj2
=

1

rn1

n−1∑
j=1

(2n− 2j + 1)!

((n− j)!)222(n−j)
(2j + 1)!

(j!)222j
(
r1
r2

)j =

1

rn1

(2n+ 1)!

(n!)222n

n−1∑
j=1

(2j + 1)!

(j!)222j
(
r1
r2

)j+

1

rn1

Mn∑
j=1

( (2n− 2j + 1)!

((n− j)!)222(n−j)
− (2n+ 1)!

(n!)222n

)(2j + 1)!

(j!)222j
(
r1
r2

)j+

1

rn1

n−1∑
j=Mn

( (2n− 2j + 1)!

((n− j)!)222(n−j)
− (2n+ 1)!

(n!)222n

)(2j + 1)!

(j!)222j
(
r1
r2

)j :=

1

rn1

(
In + IIn + IIIn

)
,

where Mn = [Cl log n], with Cl sufficiently large so that

(7.39) |IIIn| ≤ n−l,

similar to (7.20). This time, we choose l > 1
2 .

Similar to the derivation of (7.19), we use (7.34) and (7.36) to obtain

(7.40)

In =
2n

1
2

√
π

(
1 +

3

8n
+O(

1

n2
)
)(

(1− r1
r2

)−
3
2 − 1 +Rn

)
=

2n
1
2

√
π

(
1 +

3

8n
+O(

1

n2
)
)( 1

8(3− 2
√

2)
3
2 2

3
4

− 1
)
,

where Rn decays exponentially.

We now turn to IIn. In the present case we have

IIn =

Mn∑
j=1

( (2n− 2j + 1)!

((n− j)!)222(n−j)
− (2n+ 1)!

(n!)222n

)(2j + 1)!

(j!)222j
(
r1
r2

)j .

Similar to (7.21) and (7.22), we have

(2n− 2j + 1)!

((n− j)!)222(n−j)
− (2n+ 1)!

(n!)222n
=

(2n+ 1)!

(n!)222n
(Bn−j
Bn

− 1
)
,
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where now Bk = (2k+1)!
(k!)222k

. By (7.36),

Bn−j
Bn

=

2(n−j)
1
2√

π

(
1 + 3

8(n−j) +O( 1
n2 )
)

2n
1
2√
π

(
1 + 3

8n +O( 1
n2 )
) = (

n− j
n

)
1
2
(
1 +O(

log n

n2
)
)

=

(
1− j

2n
+O(

1

n2
)
)(

1 +O(
log n

n2
)
)

= 1− j

2n
+O(

log n

n2
),

uniformly over j ∈ {1, · · · , Cl log n}.

Thus, similar to (7.23), we obtain

(7.41) IIn =
(2n+ 1)!

(n!)222n
( Cl logn∑

j=1

(
− j

2n
+O(

log n

n2
)
)(2j + 1)!

(j!)222j
(
r1
r2

)j .

We write

(7.42)

∞∑
j=1

j

2

(2j + 1)!

(j!)222j
(
r1
r2

)j =
[x

2

( ∞∑
j=1

(2j + 1)!

(j!)222j
xj
)′]|x= r1

r2

=

[x
2

(
(1− x)−

3
2 − 1

)′]|x= r1
r2

=
3

4

r1
r2

(1− r1
r2

)−
5
2 =

3

256 · 2
1
4 (3− 2

√
2)

1
2

,

where we have used the fact that r2 = 1
r1

. Using (7.42) and (7.36) in (7.41),

we obtain, similar to (7.26),

(7.43)

IIn =
2n

1
2

√
π

(
1 +

3

8n
+O(

1

n2
)
)(
− 3

256 · 2
1
4 (3− 2

√
2)

1
2

1

n
+O(

log n

n2
)
)

=

− 1√
π

3

128 · 2
1
4 (3− 2

√
2)

1
2

1

n
1
2

+ o(
1

n
1
2

).

From (7.35), (7.37)-(7.40) and (7.43), we obtain

(7.44)

αn =
2n

1
2

√
πrn1

(
1 +

3

8n
+O(

1

n2
)
)

+
2n

1
2

√
πrn1

(
1 +

3

8n
+O(

1

n2
)
)( 1

8(3− 2
√

2)
3
2 2

3
4

− 1
)
−

1√
π

3

128 · 2
1
4 (3− 2

√
2)

1
2

1

n
1
2

=

(3− 2
√

2)−n−
3
2

√
π

( 1

4 · 2
3
4

n
1
2 +

3

32 · 2
3
4

1

n
1
2

− 3(3− 2
√

2)

128 · 2
1
4

1

n
1
2

+ o(
1

n
1
2

)
)

=

(3− 2
√

2)−n−
3
2

√
π

( 1

4 · 2
3
4

n
1
2 +

24− 9
√

2

128 · 2
3
4

1

n
1
2

+ o(
1

n
1
2

)
)
.

�
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