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Abstract. For τ ∈ Sn, let Sn(τ) denote the set of permutations in

Sn which avoid the pattern τ , and let Eτn denote the expectation with

respect to the uniformly random probability measure on Sn(τ). Let

In(σ) denote the number of inversions in σ ∈ Sn. We study EτnIn for

τ ∈ {231, 132, 213, 312} ⊂ S3. We prove that

E231
n In = E312

n In =
1

2

n!(n+ 1)!4n

(2n)!
− 1

2
(3n+ 1),

and that

E132
n In = E213

n In =
1

2
(n− 1)n− E231

n In.

From the first equation it follows that

E231
n In = E312

n In ∼
√
π

2
n

3
2 .

We also show that the variance VarPτn (In) of In under P τn satisfies

VarPτn (In) ∼ (
5

6
− π

4
)n3 ≈ 0.048n3, for τ ∈ {231, 132, 213, 312}.

1. Introduction and Statement of Results

Recall the definition of pattern avoidance for permutations. Let Sn denote

the set of permutations of [n] := {1, · · · , n}. If σ = σ1σ2 · · ·σn ∈ Sn and

τ = τ1 · · · τm ∈ Sm, where 2 ≤ m ≤ n, then we say that σ contains τ as

a pattern if there exists a subsequence 1 ≤ i1 < i2 < · · · < im ≤ n such

that for all 1 ≤ j, k ≤ m, the inequality σij < σik holds if and only if the

inequality τj < τk holds. If σ does not contain τ , then we say that σ avoids

τ . Denote by Sn(τ) the set of permutation in Sn that avoid τ . (If τ ∈ Sm
and m > n, then we say that every σ ∈ Sn avoids τ .)
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In this paper we obtain an explicit formula and give the asymptotic behav-

ior for the expected number of inversions in a permutation chosen uniformly

at random from S(τ), where τ ∈ S3 satisfies τ ∈ {231, 132, 213, 312}. Recall

that the number of inversions In(σ) in a permutation σ ∈ Sn is given by

In(σ) =
∑

1≤i<j≤n
1σj<σi .

As σ ∈ Sn varies, In(σ) takes on all integral values between 0 and 1
2(n−1)n.

By symmetry, the expected number of inversions in a uniformly random

permutation from Sn is 1
4(n− 1)n.

Let P τn denote the uniform distribution on Sn(τ) and let Eτn denote the

corresponding expectation. It is well-known that |Sn(τ)| = Cn, for all six

permutations τ ∈ S3, where Cn =
(2nn )
n+1 is the nth Catalan number [3, 10].

Theorem 1.

(1.1) E231
n In = E312

n In =
1

2

4n

Cn
− 1

2
(3n+ 1) =

1

2

n!(n+ 1)!4n

(2n)!
− 1

2
(3n+ 1),

and

(1.2) E231
n In = E312

n In ∼
√
π

2
n

3
2 .

Also,

(1.3) E132
n In = E213

n In =
1

2
(n− 1)n− E231

n In.

Remark. One can easily check that the total number of inversions in all

of the C4 = 14 permutations in S4(231) is equal to 37, and with a little

more effort, one can check that the total number of inversions in all of

the C5 = 42 permutations in S5(231) is equal to 176. Thus, E231
4 I4 = 37

14

and E231
5 I5 = 88

21 . The reader can check that the right hand side of (1.1)

reproduces this for n = 4, 5.

It follows from the theorem that under P τn , the expected value of the

fraction of pairs {(σi, σj)}1≤i<j≤n that are inverted converges to 0 or 1 re-

spectively as n→∞, according to whether τ itself has two inversions or one

inversion respectively. This expected value also converges to 0 if τ = 321,

and to 1 if τ = 123. Indeed, a look at the Simion-Schmidt bijection [3, 10]

between Sn(132) and Sn(123), or equivalently, between Sn(231) and Sn(321),
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easily reveals that In under P 123
n stochastically dominates In under P 132

n ,

and that In under P 231
n stochastically dominates In under P 321

n .

Since In(σ) ≤ 1
2(n−1)n, for all σ ∈ Sn, it follows trivially from Theorem 1

that the weak law of large numbers holds for In under P τn , for τ ∈ {132, 213}:

w− lim
n→∞

In
EτnIn

= 1, for τ ∈ {132, 213}.

To study the concentration of In under P τn for τ ∈ {231, 312}, we now

consider the variance VarP τn (In) of In.

Theorem 2.

(1.4) VarP τn (In) ∼ (
5

6
− π

4
)n3 ≈ 0.048n3, for τ ∈ {231, 132, 213, 312}.

The following corollary of Theorems 1 and 2 is an immediate application

of Chebyshev’s inequality.

Corollary 1.

(1.5) lim sup
n→∞

P τn (| In√
π
2 n

3
2

− 1| > a) ≤
5
6 −

π
4

a2
≈ 0.048

a2
, for τ ∈ {231, 312}.

Remark. Letting a = 1 in the corollary gives

lim sup
n→∞

P τn (In ≥
√
πn

3
2 ) ≤ 5

6
− π

4
≈ 0.048, for τ ∈ {231, 312}

while letting a = 1
2 gives

lim sup
n→∞

P τn (
1

4

√
πn3 ≤ In ≤

3

4

√
πn

3
2 ) ≥ 1−(

10

3
−π) ≈ 0.808, for τ ∈ {231, 312}.

It is possible, of course, that the weak law of large number holds for In
under P τn , for τ ∈ {231, 312}, even though the second moment method fails.

The perspective taken in this paper is in some sense the obverse of the

perspective taken in [8]. In that paper, the asymptotic probability as n→∞
of Sn(τ), for τ ∈ S3, was studied under Mallows distributions. The Mallows

distribution P qn on Sn, where q ∈ (0,∞), is defined by P qn(σ) = qIn(σ)

Nn(q)
,

where Nn(q) is the appropriate normalization constant. Thus, P qn favors

permutations with few inversions if q ∈ (0, 1) and favors permutations with

many inversions if q > 1.

We are unaware of any articles in the literature concerning the explicit

enumeration of the inversion statistic for pattern avoiding permutations.



4 ROSS G. PINSKY

The paper [4] investigates the analog of Wilf equivalence for the inversion

statistic in pattern-avoiding permutations: two patterns τ1 and τ2 are equiv-

alent with respect to the inversion statistic if the distribution of the inver-

sion statistic of a uniformly distributed permutation from Sn(τ1) and from

Sn(τ2) coincide for all n. Enumeration of fixed points for pattern avoiding

permutations has been considered in [5, 6, 9]. Enumeration of other statis-

tics, including ascents, descents, double ascents, double descents, peaks and

valleys can be found among the papers [1, 2, 7].

We end this introduction by noting that it suffices to prove Theorems 1

and 2 for just one of the four choices of τ . To see this, recall that the reverse

σrev of a permutation σ = σ1 · · ·σn is the permutation σrev := σn · · ·σ1,
and the complement σcomp of σ is the permutation satisfying σcomp

j = n +

1 − σj , j ∈ [n]. Let σrev-comp denote the reverse of the complement of σ,

or equivalently, the complement of the reverse of σ. Clearly, σ ∈ Sn(τ) if

and only if σ∗ ∈ Sn(τ∗), for ∗ equal to any of the three transformations on

permutations that we just defined. Also, one has the identities

In(σ) + In(σrev) =
1

2
(n− 1)n, σ ∈ Sn;

In(σ) + In(σcomp) =
1

2
(n− 1)n, σ ∈ Sn;

In(σ) = In(σrev-comp), σ ∈ Sn.

Thus, from the first two identities above, if we prove Theorem 1 for say

τ = 231, then the theorem also holds for τ = 132 = 231rev and for τ =

213 = 231comp. And then since the theorem now holds for 213, it also holds

for τ = 312 = 213rev. If we prove Theorem 2 for say τ = 231, then from the

three identities above, it also holds for τ ∈ {132, 213, 312}.
Using generating function techniques, we prove Theorem 1 in section 2

and Theorem 2 in section 3.

2. Proof of Theorem 1

As shown in the last paragraph of the first section, it suffices to prove

the theorem for τ = 231. If σ ∈ Sn(231) satisfies σj = n, then necessar-

ily {σ1, · · · , σj−1} = {1, · · · , j − 1} and {σj+1, · · · , σn} = {j + 1, · · · , n}.
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Furthermore the permutation σ1 · · ·σj−1 belongs to Sj−1(231) and the per-

mutation σ′ ∈ Sn−j obtained by the relative order of σj+1 · · ·σn satisfies

σ′ ∈ Sn−j(231). This correspondence is of course reversible. From this it

follows that

(2.1) P 231
n (σj = n) =

Cj−1Cn−j
Cn

, j = 1, · · · , n; n ∈ N,

and that

(2.2) E231
n (In|σj = n) = E231

j−1Ij−1 + E231
n−jIn−j + (n− j).

From (2.1) and (2.2) we obtain

(2.3)

E231
n In =

n∑
j=1

(
E231
j−1Ij−1 + E231

n−jIn−j + (n− j)
)Cj−1Cn−j

Cn
=

n−
n∑
j=1

j
Cj−1Cn−j

Cn
+ 2

n∑
j=1

E231
j−1Ij−1

Cj−1Cn−j
Cn

.

Letting

(2.4) dn = E231
n In,

and letting l = j − 1, we can rewrite (2.3) as

(2.5) Cndn = nCn −
n−1∑
l=0

lClCn−l−1 −
n−1∑
l=0

ClCn−l−1 + 2

n−1∑
l=0

dlClCn−l−1.

Let

(2.6) C(t) =

∞∑
j=0

Cnt
n

denote the generating function for the Catalan numbers. As is well known,

(2.7) C(t) =
1− (1− 4t)

1
2

2t
.

Note that

(2.8) tC ′(t) =
∞∑
n=0

nCnt
n.

Define

(2.9) D(t) =

∞∑
n=0

Cndnt
n.
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Multiplying both sides of (2.5) by tn and summing over n from 0 to ∞, we

obtain

(2.10)

D(t) = tC ′(t)− t
∞∑
n=0

n−1∑
l=0

lClt
lCn−l−1t

n−l−1 − t
∞∑
n=0

n−1∑
l=0

Clt
lCn−l−1t

n−l−1

+ 2t

∞∑
n=0

∞∑
l=0

Cldlt
lCn−l−1t

n−l−1.

From (2.6) and (2.8)–(2.10), it follows that

(2.11) D(t) = tC ′(t)− t2C(t)C ′(t)− tC2(t) + 2tD(t)C(t),

from which we conclude that

(2.12) D(t) =
tC ′(t)− t2C(t)C ′(t)− tC2(t)

1− 2tC(t)
.

The denominator of (2.12) satisfies

(2.13) 1− 2tC(t) = (1− 4t)
1
2 .

We have

(2.14) C ′(t) = − 1

2t2
+

(1− 4t)
1
2

2t2
+

(1− 4t)−
1
2

t
.

Thus,

(2.15) tC ′(t) + C(t) = (1− 4t)−
1
2 .

From (2.7), (2.14) and (2.15), we can write the numerator of (2.12) as

(2.16)

tC ′(t)− t2C(t)C ′(t)− tC2(t) = tC ′(t)− tC(t)
(
tC ′(t) + C(t)

)
=

− 1

2t
+

(1− 4t)
1
2

2t
+ (1− 4t)−

1
2 − 1− (1− 4t)

1
2

2
(1− 4t)−

1
2 =

− 1

2t
+

(1− 4t)
1
2

2t
+

(1− 4t)−
1
2

2
+

1

2

From (2.12), (2.13) and (2.16), we conclude that

(2.17) D(t) =
1

2

(
− (1− 4t)−

1
2

t
+

1

t
+ (1− 4t)−1 + (1− 4t)−

1
2

)
.

The Taylor series for (1− 4t)−
1
2 is given by

(2.18) (1− 4t)−
1
2 =

∞∑
n=0

(
2n

n

)
tn,
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and of course

(2.19) (1− 4t)−1 =

∞∑
n=0

4ntn.

From (2.17),(2.18) and (2.19), we conclude that the coefficient Cndn of tn

in the power series representation of D(t) satisfies

(2.20)

2Cndn = −
(

2n+ 2

n+ 1

)
+ 4n +

(
2n

n

)
= 4n −

(
2n

n

)
3n+ 1

n+ 1
= 4n − (3n+ 1)Cn.

Thus,

E231
n In = dn =

1

2

4n

Cn
− 1

2
(3n+ 1),

which is (1.1). Using Stirling’s formula n! ∼ nne−n
√

2πn with (1.1) readily

yields (1.2). �

3. Proof of Theorem 2

As shown in the last paragraph of the first section, it suffices to prove

the theorem for τ = 231. The same reasoning as in the first paragraph of

section 2 gives

(3.1) E231
n (I2n|σj = n) = E

(
n− j +X + Y )2,

where X is distributed as Ij−1 under P 231
j−1, Y is distributed as In−j under

P 231
n−j , and X and Y are independent. Let

(3.2) gn = E231
n I2n.

Using (3.1) and (3.2) with (2.1), and recalling the definition of dn in (2.4),

we have

(3.3)

gn = E231
n I2n =

n∑
j=1

gj−1
Cj−1Cn−j

Cn
+

n∑
j=1

gn−j
Cj−1Cn−j

Cn
+

n∑
j=1

(n− j)2Cj−1Cn−j
Cn

+

2
n∑
j=1

(n− j)(dj−1 + dn−j)
Cj−1Cn−j

Cn
+ 2

n∑
j=1

dj−1dn−j
Cj−1Cn−j

Cn
.
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Multiplying on both sides by Cn and letting l = j − 1, we rewrite (3.3) as

(3.4)

Cngn =
n−1∑
l=0

glClCn−l−1 +
n−1∑
l=0

gn−l−1ClCn−l−1 +
n−1∑
l=0

(n− l − 1)2ClCn−l−1+

2
n−1∑
l=0

(n− l − 1)(dl + dn−l−1)ClCn−l−1 + 2
n−1∑
l=0

dldn−l−1ClCn−l−1.

Let

(3.5) G(t) =

∞∑
n=0

Cngnt
n,

Multiplying both sides of (3.4) by tn and summing over n from 0 to ∞, and

noting that the first two terms on the right hand side of (3.4) are identical,

we obtain

(3.6)

G(t) = 2t

∞∑
n=0

n−1∑
l=0

Clglt
lCn−l−1t

n−l−1 + t

∞∑
n=0

n−1∑
l=0

Clt
l(n− l − 1)2Cn−l−1t

n−l−1+

2t

∞∑
n=0

n−1∑
l=0

Cldlt
l(n− l − 1)Cn−l−1t

n−l−1 + 2t

∞∑
n=0

n−1∑
l=0

Clt
l(n− l − 1)Cn−l−1dn−l−1t

n−l−1+

2t

∞∑
n=0

n−1∑
l=0

Cldlt
lCn−l−1dn−l−1t

n−l−1.

From (2.6), we have

(3.7) t2C ′′(t) + tC ′(t) =
∞∑
n=0

n2Cnt
n.

From (2.9) we have

(3.8) tD′(t) =
∞∑
n=0

nCndnt
n.

From (3.5)–(3.8) along with (2.6), (2.8) and (2.9), it follows that

G(t) = 2tG(t)C(t)+tC(t)
(
t2C ′′(t)+tC ′(t)

)
+2t

(
D(t)tC ′(t)

)
+2t

(
C(t)tD′(t)

)
+2tD2(t),
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from which we conclude that

(3.9)

G(t) =
t

1− 2tC(t)

(
t2C(t)C ′′(t) + tC(t)C ′(t) + 2tD(t)C ′(t) + 2tC(t)D′(t) + 2D2(t)

)
=

t(1− 4t)−
1
2
(
t2C(t)C ′′(t) + tC(t)C ′(t) + 2tD(t)C ′(t) + 2tC(t)D′(t) + 2D2(t)

)
,

where the last inequality follows from (2.7).

From (2.7), (2.17) and (3.9), it follows that the right hand side of (3.9),

and consequently also the function G(t), is the finite sum of terms of the

form atb(1 − 4t)−c, where a ∈ R, b ∈ Z and c satisfies either c ∈ Z+ or

c ∈ 1
2Z − Z. Let [(1 − 4t)−c]n denote the coefficient of tn in the power

series expansion of (1 − 4t)−c. From (2.7) and Stirling’s formula, we have

[(1 − 4t)−
1
2 ]n =

(
2n
n

)
= 4nθ(n−

1
2 ). Since

(
(1 − 4t)l

)′
= −4l(1 − 4t)l−1, it is

immediate that

(3.10) [(1− 4t)−
1
2
−l]n = 4nθ(n−

1
2
+l), l ∈ Z.

The same considerations applied to (2.19) show that

(3.11) [(1− 4t)−l]n = 4nθ(nl−1), l ∈ N.

In light of the above paragraph and (3.9), the order of the coefficient

Cngn of tn in the power series expansion of G(t) will be 4ntc−1, where −c is

the smallest exponent of (1− 4t) appearing among the various terms of the

form atb(1− 4t)−c that comprise the right hand side of (3.9) (unless, there

is more than one term with this smallest exponent and these terms cancel

each other out, however we shall see that this does not happen).

From (2.7), we see that C(t) = 1
2 t
−1 − 1

2 t
−1(1 − 4t)

1
2 is the sum of two

terms of the form atb(1 − 4t)−c, one of which has −c = 0 and the other of

which has −c = 1
2 . Term by term differentiation of C(t) shows that C ′(t) and

C ′′(t) are each the sum of terms of the above noted form with the smallest

exponent −c being −c = −1
2 in the case of C ′(t) and −c = −3

2 in the case

of C ′′(t). From (2.17), we see that in the representation of D(t) as the sum

of terms of the above noted form, the smallest exponent −c is −1, and thus

in the representation for D′(t), the smallest exponent −c is −2.

Consider now the five summands between the parentheses on the right

hand of (3.9). The first term is t2C(t)C ′′(t). The smallest exponent −c in



10 ROSS G. PINSKY

the representation for t2C(t)C ′′(t) is −3
2 , obtained by adding the smallest

exponent −c = 0 in the representation of C(t) to the smallest exponent

−c = −3
2 in the representation of C ′′(t). Similarly the smallest exponents −c

in the representations of the other four terms are as follows: for tC(t)C ′(t)

it is −c = 0 + (−1
2) = −1

2 ; for 2D(t)C ′(t) it is −c = −1 + (−1
2) = −3

2 ;

for 2tC(t)D′(t) is is −c = 0 + (−2) = −2; for 2D2(t) it is −c = (−1) +

(−1) = −2. Thus, the smallest exponent −c in the sum of the five terms

between the parentheses on the right hand side of (3.9) is c = −2, with a

contribution coming from the term 2tC(t)D′(t) and a contribution coming

from 2D2(t). Differentiating (2.17), we find that the term in D′(t) with

the exponent −c = −2 is 2(1 − 4t)−2. The term in C(t) with exponent

−c = 0 is 1
2 t
−1. Thus, the term in 2tC(t)D′(t) with the exponent c = −2

is 2t(12 t
−1)(2(1− 4t)−2) = 2(1− 4t)−2. From (2.17), the term in D(t) with

the exponent −c = −1 is 1
2(1 − 4t)−1. Thus, the term in 2D2(t) with the

exponent c = −2 is 2(12(1− 4t)−1)2 = 1
2(1− 4t)−2.

Recall that the five summands on the right hand side of (3.9) are multi-

plied by t(1−4t)−
1
2 . Thus, it follows from the above analysis that the leading

order asymptotic behavior of the term Cngn in the power series expansion

of G(t) is equal to the leading order asymptotic behavior of the coefficient of

tn in the power series expansion of t(1− 4t)−
1
2

(
2(1− 4t)−2 + 1

2(1− 4t)−2
)

=
5
2 t(1− 4t)−

5
2 . Differentiating (2.18) twice shows that

(1− 4t)−
5
2 =

1

12

∞∑
n=2

n(n− 1)

(
2n

n

)
tn−2.

Thus,

5

2
t(1− 4t)−

5
2 =

5

24

∞∑
n=2

n(n− 1)

(
2n

n

)
tn−1 =

5

24

∞∑
n=1

(n+ 1)n

(
2n+ 2

n+ 1

)
tn.

We conclude that

(3.12) Cngn ∼
5

24
n(n+ 1)

(
2n+ 2

n+ 1

)
.

A little algebra gives

(3.13) n(n+ 1)

(
2n+ 2

n+ 1

)
= 2n(n+ 1)(2n+ 1)Cn.
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From (3.12) and (3.13) we obtain

(3.14) E231
n I2n = gn ∼

5

6
n3.

From (3.14) and (1.2), we conclude that

VarP 231
n

(In) ∼ 5

6
n3 − (

√
π

2
n

3
2 )2 = (

5

6
− π

4
)n3,

which completes the proof of the theorem. �
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permutations, Śem. Lothar. Combin. 68 (2010), B63a, 7 pp.
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