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Abstract. Let Sn denote the set of permutations of [n] and let σ =

σ1 · · ·σn ∈ Sn. For any subsequence {σij}kj=1 of {σi}ni=1 of length k ≥ 2,

construct the “up/down” sequence V1 · · ·Vk−1 defined by

Vj =

U, if σij+1 − σij > 0;

D, if σij+1 − σij < 0,

where U refers to “up”, D to “down” and V to “vertical”. Consider now

a fixed up/down pattern: V1 · · ·Vl, where l ∈ N and Vj ∈ {U,D}, j ∈
[l]. Given a permutation σ ∈ Sn, consider the length of the longest

subsequence of σ that repeats this pattern. Incomplete patterns are not

counted, so the length is necessarily either 0 or of the form kl+1, where

k ∈ N. For example, consider l = 3 and V1V2V3 = UUD. Then for

the permutation 342617985 ∈ S9, the length of the longest subsequence

that repeats the pattern UUD is 7; it is obtained by three different

subsequences, namely 3461798, 3461795 and 3461785.

The above framework includes one much studied case as well as an-

other case that has been studied to some degree. The pattern U is the

celebrated case of the longest increasing subsequence. The pattern UD

(or DU) is the case of the longest alternating subsequence. These have

been studied both under the uniform distribution on Sn as well as un-

der the uniform distribution on those permutations in Sn which avoid a

particular pattern of length three.

In this paper, we consider the patterns UUD and UUUD under the

uniform distribution on those permutations in Sn that avoid the pat-

tern 132. We prove that the expected value of the longest increasing

subsequence following the pattern UUD is asymptotic to 3
7
n and the

expected value of the longest increasing subsequence following the pat-

tern UUUD is asymptotic to 4
11
n. (For UD (alternating subsequences)

it is known to be 1
2
n.) This leads directly to appropriate corresponding

results for permutations avoiding any particular pattern of length three.
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1. Introduction and Statement of Results

Let Sn denote the set of permutations of [n] = {1, · · · , n} and let σ =

σ1 · · ·σn ∈ Sn. For any subsequence {σij}kj=1 of {σi}ni=1 of length k ≥ 2,

construct the “up/down” sequence V1 · · ·Vk−1 defined by

Vj =

U, if σij+1 − σij > 0;

D, if σij+1 − σij < 0,

where U refers to “up”, D refers to “down” and V refers to “vertical”.

Consider now a fixed up/down pattern: V1 · · ·Vl, where l ∈ N and Vj ∈
{U,D}, j ∈ [l]. Given a permutation σ ∈ Sn, consider the length of the

longest subsequence of σ that repeats this pattern. Incomplete patterns are

not counted, so the length is necessarily either 0 or of the form kl+1, where

k ∈ N. For example, consider l = 3 and V1V2V3 = UUD. Then for the

permutation 342617985 ∈ S9, the length of the longest subsequence that re-

peats the pattern UUD is 7; it is obtained by three different subsequences,

namely 3461798, 3461795 and 3461785. On the other hand, for the permu-

tation 319652478, the length of the longest subsequence that repeats the

pattern UUD is 0 because this pattern does not appear at all.

The above framework includes one very celebrated and much studied case

as well as another case that has been studied to some degree. The pattern U

is the case of the longest increasing subsequence. This celebrated case was

studied by Logan and Shepp [7] and Vershik and Kerov [12]. Their worked

showed that the expected value of the length of the longest increasing subse-

quence in a uniformly random permutation from Sn behaves asymptotically

as 2
√
n. More precise information on the behavior of this random variable

was obtained later in the seminal paper of Baik, Deift and Johansson [2]; for

more on the longest increasing subsequence and many additional references,

see the book by Romik [9].

The pattern UD (orDU) is the case of the longest alternating subsequence

(in the first case starting with increasing and ending with decreasing, and in

the second case vice versa). Stanley [11] investigated alternating sequences

and showed that the expected value of the longest alternating subsequence in

a uniformly random permutation from Sn behaves asymptotically as 2
3n. (Of

course this asymptotic behavior is independent of how we define the initial or

terminal direction in the sequence.) See also further results by Widom [13].

The analysis in the alternating case is simpler than in the increasing case
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because, as Stanley noted, there is always a longest alternating subsequence

(either beginning with down or ending with up) of σ ∈ Sn which contains

the number n. Thus, a longest subsequence can be broken down into smaller

pieces that are concatenated.

In [11], Stanley also posed the question of whether it is true that for any

pattern of ups and downs as we have defined above, there exist constants µ

and c such that the expected value of the length of the longest subsequence

repeating this pattern in a uniformly random permutation from Sn behaves

asymptotically as µnc. The recent paper [1] answered this question in the

affirmative, and showed in particular that for every pattern except for the

pattern U corresponding to the longest increasing subsequence, one has

c = 1. Thus, for every pattern except for U , the asymptotic behavior of

the expected value of the length of the longest subsequence repeating that

pattern is µn, for some µ ∈ (0, 1). The authors of [1] did not explicitly

calculate the value of µ; however, they constructed a dynamical system that

can be used to approximate µ. They also proved a central limit theorem

for the length of the longest subsequence repeating any particular pattern,

except for the pattern U .

In this paper, instead of considering a permutation that is uniformly ran-

dom from Sn, we consider a permutation that is uniformly random from

those permutations in Sn which avoid a certain pattern of length three.

Our aim is to calculate explicitly the asymptotic behavior of the expected

value of the length of the longest subsequence repeating certain patterns of

ups and downs in such a random permutation. Before continuing to ex-

plain this, we recall the definition of pattern-avoiding for permutations.

If σ = σ1 · · ·σn ∈ Sn and τ = τ1 · · · τm ∈ Sm, where 2 ≤ m < n,

then we say that σ contains τ as a pattern if there exists a subsequence

1 ≤ i1 < i2 < · · · < im ≤ n such that for all 1 ≤ j, k ≤ m, the inequality

σij < σik holds if and only if the inequality τj < τk holds. If σ does not

contain τ , then we say that σ avoids τ . We consider here permutations on

Sn that avoid a pattern τ ∈ S3. Denote by Sn(τ) the set of permutation in

Sn that avoid τ . It is well-known that |Sn(τ)| = Cn, for all six permuta-

tions τ ∈ S3, where Cn = 1
n+1

(
2n
n

)
, n ∈ N, is the nth Catalan number [3].

Let P
av(τ)
n denote the uniform probability measure on Sn(τ) and let E

av(τ)
n

denote the corresponding expectation.

As already noted, the pattern U corresponds to increasing subsequences.

In [4], the asymptotic behavior of the expectation of the longest increasing
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subsequence Ln of a random permutation under the distribution P
av(τ)
n was

obtained for all six permutations τ ∈ S3. Of course, the case τ = 123

is trivial. The expectation is on the order n only for τ ∈ {231, 312, 321}.
The asymptotic behavior of the variance vn(τ) was also investigated, and the

limiting distribution of Ln−E
av(τ)
n Ln

vn(τ)
was calculated, the limit being Gaussian

only for τ ∈ {231, 312}. Large deviations were considered in [8].

As already noted, the pattern UD (orDU) corresponds to alternating sub-

sequences, In [6], the asymptotic behavior of the expectation of the longest

alternating sequence of a random permutation under the distribution P
av(τ)
n

was shown to be n
2 for all six choices of τ ∈ Sn. The asymptotic variance

was also obtained as well as a central limit theorem. Large deviations were

considered in [8].

In this paper, for the patterns UUD and UUUD, we will calculate the

asymptotic behavior of the expectation of the longest subsequence repeat-

ing that pattern in a uniformly random permutation avoiding the pattern

132. The proof in the case of UUD involves analyzing the asymptotic be-

havior of the coefficients of either of two generating functions that satisfy

a system of two linear equations. The calculations are somewhat involved.

The proof in the case UUUD involves analyzing the asymptotic behavior

of the coefficients of any one of three generating functions that satisfy a

system of three linear equations. Here the calculation are quite involved.

Using the same method, we could also obtain the asymptotic behavior of

the variance, but we have decided not to pursue this, as those calculations

would be even more involved. In principle, our technique can be continued

for the pattern U lD, for any l ∈ N, where U l indicates l consecutive U ’s.

However, this involves solving a system of l linear equations for l gener-

ating functions, solving explicitly for one of them, and then analyzing its

coefficients. It also involves the solving of an auxiliary set of equations to

calculate the probability that σ ∈ Sn(132) does not have an increasing sub-

sequence of length j, for j = 1, · · · , l (an extension of Lemma 1 in Section

3). The reason the cases U lD are in principle tractable for 132-avoiding

permutations is that a variant of Stanley’s observation holds in these cases;

namely, that for a 132-avoiding permutation, there is always either a longest

subsequence repeating the pattern U lD that contains the number n, or else,

every such longest subsequence starts after the appearance of the number n

in the permutation.
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Using the reversal, complementation, and reversal-complementation oper-

ations for permutations, the results we obtain for permutations avoiding the

pattern 132 can be translated into similar results for permutations avoiding

any one of the patterns 213, 231, 312. Using a well-known bijection between

permutations avoiding the pattern 132 and permutations avoiding the pat-

tern 123, along with reversal, the results we obtain can be translated into

similar results for permutations avoiding either of the patterns 123, 321.

We now state two theorems for 132-avoiding permutations, one for the

pattern UUD and one for the pattern UUUD, and then state a corollary of

these two theorems that contains similar results for τ -avoiding permutations

for the other five τ ∈ S3.

Theorem 1. Let LU
2D

n (σ) denote the length of the longest subsequence of

the repeated pattern UUD in σ ∈ Sn(132). (So LU
2D

n (σ) is either equal to 0

or to 3k + 1 for some k ∈ N.) Then

(1.1) Eav(132)
n LU

2D
n ∼ 3

7
n.

Theorem 2. Let LU
3D

n (σ) denote the length of the longest subsequence of

the repeated pattern UUUD in σ ∈ Sn(132). (So LU
3D

n (σ) is either equal to

0 or to 4k + 1 for some k ∈ N.) Then

(1.2) Eav(132)
n LU

3D
n ∼ 4

11
n.

Remark. Recall that it was noted above that for the repeated pattern UD

(which corresponds to alternating subsequences), the corresponding asymp-

totic behavior is 1
2n.

Corollary 1. i. Let LV1V2V3n (σ) denote the length of the longest subsequence

of the repeated pattern V1V2V3 in σ ∈ Sn, where Vi ∈ {U,D}, i = 1, 2, 3.

Then

(1.3) Eav(τ)
n LV1V2V3n ∼ 3

7
n,

for the following five pairs of V1V2V3 and τ : UDD and 231; DDU and 312;

DUU and 213; UDD and 123; UUD and 321.

ii. Let LV1V2V3V4n (σ) denote the length of the longest subsequence of the re-

peated pattern V1V2V3V4 in σ ∈ Sn, where Vi ∈ {U,D}, i = 1, 2, 3, 4. Then

(1.4) Eav(τ)
n LV1V2V3V4n ∼ 4

11
n,

for the following five pairs of V1V2V3 and τ : UDDD and 231; DDDU and

312; DUUU and 213; UDDD and 123; UUUD and 321.
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Proof of Corollary. Recall that the reverse of a permutation σ = σ1 · · ·σn
is the permutation σrev := σn · · ·σ1, and the complement of σ is the permu-

tation σcom satisfying σcomi = n + 1− σi, i = 1, · · · , n. Let σrev-com denote

the permutation obtained by applying reversal and then complementation

to σ (or equivalently, vice versa). Since 132rev = 231, 132comp = 312 and

132rev-com = 213, if follows that the three operations, reversal, complemen-

tation and reversal-complementation, are bijections from Sn(132) to Sn(τ),

with τ = 231 in the case of reversal, τ = 312 in the case of complementation

and τ = 213 in the case of reversal-complementation. From these facts and

Theorems 1 and 2, the corollary follows immediately for τ ∈ {231, 312, 213}.
There is a well-known explicit bijection between Sn(132) and Sn(123)

[10, 3]. Recall that an entry j ∈ [n] of a permutation σ ∈ Sn is called a left-to-

right minimum if σj = min{σi : 1 ≤ i ≤ j}. For a permutation σ ∈ Sn(132),

let {ij}kj=1 denote its left-to-right minima. Then necessarily the entries of σ

that appear from left to right between σij and σij+1 (or after σik up through

the final term in the permutation) are increasing, with each entry being the

smallest number remaining that is larger than its predecessor. (In particular,

the left most such entry is the smallest remaining number larger than σij .)

The bijection between Sn(132) and Sn(123) preserves the set of left-to-right

minima, and then rearranges all of the other entries in descending order

from left to right. Note that the values of the permutation at the left-to-

right minima form a decreasing sequence, and these other rearranged entries

also form a decreasing sequence; thus the permutation obtained is the union

of two decreasing sequences, which is equivalent to its being 123-avoiding.

One can check easily that for the pattern UUD (or UUUD), there is either

no copy or one copy of the pattern between two consecutive left-to-right

minima in the permutation σ ∈ Sn(132), and that the same number of

copies of UDD (or UDDD) appear between those two consecutive left-to-

right minima in the 123-avoiding permutation obtained from σ via the above

described bijection. This proves the corollary for τ = 123. Applying reversal

to 123 proves the corollary for τ = 321. �

We prove Theorem 1 in Section 2. We derive a system of two linear

equations for two generating functions, and then solve explicitly for one of

them. These generating functions are connected to the expected number of

complete patterns UUD in a maximal subsequence. The leading order as-

ymptotic behavior of the coefficients of either of these generating functions
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is equal to the leading order asymptotic behavior of 1
3CnE

av(132)
n LU

2D
n . Per-

forming an asymptotic analysis of the coefficients of this generating function

yields the proof of the theorem.

The proof of Theorem 2 is much longer. In Section 3 we derive a sys-

tem of three linear equations for three generating functions, and then solve

explicitly for one of them. The explicit expression for this generating func-

tion is quite involved. These generating functions are connected to the

expected number of complete patterns UUUD in a maximal subsequence.

The leading order asymptotic behavior of the coefficients of any of these

three generating functions is equal to the leading order asymptotic behavior

of 1
4CnE

av(132)
n LU

3D
n . In Section 4 we perform a lot of algebra in order to

obtain the generating function in a more manageable form. Then we per-

form an asymptotic analysis of the coefficients of this generating function to

yield the proof of the theorem.

2. Proof of Theorem 1

For σ ∈ Sn and n ∈ N, define BU2D
n (σ) to be the number of complete sets

of UUD in a longest subsequence in σ of the repeated pattern UUD. Thus,

(2.1) BU2D
n (σ) =


1
3

(
LU

2D
n (σ)− 1

)
, if LU

2D
n (σ) 6= 0;

0, if LU
2D

n (σ) = 0.

Also, for convenience, we define BU2D
0 ≡ 0.

For σ ∈ Sn and n ∈ N, define AU
2D

n (σ) = 0, if σ = n · · · 21; otherwise,

find a longest subsequence {σij}3k+2
j=1 , k ∈ Z+, of σ for which the up/down

pattern is UUD · · ·UUDU , and define AU
2D

n (σ) = k + 1. For convenience,

we define AU
2D

0 ≡ 0.

In the sequel, for any j ∈ N, BU2D
j and AU

2D
j will always be considered

as random variables on the probability space
(
Sj(132), P

av(132)
j

)
. Define

(2.2) bn = Eav(132)
n BU2D

n ; an = Eav(132)
n AU

2D
n ,

where we have suppressed the notation U2D. Define the generating functions

for {Cnbn}∞n=0 and {Cnan}∞n=0 by

(2.3)

BU2D(t) =

∞∑
n=0

Cnbnt
n;

AU2D(t) =

∞∑
n=0

Cnant
n.
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Also let C(t) =
∑∞

n=0Cnt
t denote the generating function of the Catalan

numbers, where we define C0 = 1. As is well-known,

(2.4) C(t) =
1−
√

1− 4t

2t
.

The following definition will be useful. Let a1 < a2 · · · < am be real

numbers and let ρ = ρ1 · · · ρm be a permutation of these numbers. We

define red(ρ) ∈ Sm, the reduction of ρ, to be the permutation in Sm that

has the same pattern as ρ. That is, red(ρ) = σ if σ satisfies σi < σj whenever

ρi < ρj , i, j ∈ [m]. Note that the up/down pattern that one can associate

with ρ = ρ1 · · · ρm is the same as the up/down pattern associated with

red(ρ). Every permutation σ ∈ Sn(132) has the property that if σj = n,

then the numbers {n− j + 1, · · · , n− 1} appear in the first j − 1 positions

in σ and the numbers {1, · · · , n− j} appear in the last n− j positions in σ.

From this fact, along with the fact that |Sn(132)| = Cn, it follows that

(2.5) P av(132)
n (σj = n) =

Cj−1Cn−j
Cn

, for j ∈ [n].

It also follows that under the conditioned measure P
av(132)
n |{σj = n}, the

permutation red(σ1 · · ·σj−1) ∈ Sj−1 has the distribution P
av(132)
j−1 , the per-

mutation σj+1 · · ·σn ∈ Sn−j has the distribution P
av(132)
n−j , and these two

permutations are independent.

We now derive a system of two linear equations for BU2D(t) and AU2D(t),

and then solve for one of them explicitly. From the definitions of BU2D
n and

AU
2D

n , we have

BU2D
n ≡ 0, 0 ≤ n ≤ 3; AU

2D
n ≡ 0, 0 ≤ n ≤ 1.

Thus,

(2.6)
bn = 0, 0 ≤ n ≤ 3;

an = 0, 0 ≤ n ≤ 1.

The following proposition is the key to obtaining a pair of linear equations

for the generating functions BU2D(t) and AU2D(t).

Proposition 1. i.

(2.7)
BU2D
n |{σj = n} dist

= AU
2D

j−1 +BU2D
n−j , j ∈ [n− 1], n ≥ 2;

BU2D
n |{σn = n} dist

= BU2D
n−1 , n ≥ 2,
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where on the right hand side of (2.7), AU
2D

j−1 and BU2D
n−j are understood to be

independent.

ii.

(2.8)

AU
2D

n |{σ1 = n} dist
= AU

2D
n−1 , n ≥ 2;

AU
2D

n |{σj = n} dist
=
(
AU

2D
j−1 +AU

2D
n−j

)
1{AU2D

n−j 6=0} +
(
BU2D
j−1 + 1

)
1{AU2D

n−j =0},

j ∈ {2, · · · , n}, n ≥ 2,

where on the right hand side of (2.8), AU
2D

j−1 and AU
2D

n−j are understood to be

independent and BU2D
j−1 and AU

2D
n−j are understood to be independent.

Proof. The first line of (2.7) follows from the equality

(2.9)
BU2D
n (σ) = AU

2D
j−1 (red(σ1 · · ·σj−1)) +BU2D

n−j (σj+1 · · ·σn), if σj = n,

for j ∈ [n− 1], n ≥ 2,

along with the fact noted above that under the conditioned measure P
av(132)
n |{σj =

n}, the permutation red(σ1 · · ·σj−1) ∈ Sj−1 has the distribution P
av(132)
j−1 , the

permutation σj+1 · · ·σn ∈ Sn−j has the distribution P
av(132)
n−j , and these two

permutations are independent. Rather than give a formal proof of (2.9), we

convince the reader of its validity by giving an example and then a generic

explanation.

Let σ = 435768921. Then n = 9 and j = 7. We haveAU
2D

j−1 (red(σ1 · · ·σj−1)) =

AU
2D

6 (red(435768)) = AU
2D(213546) = 2, because the subsequence 23546

(as well as 13546) corresponds to UUDU . We have BU2D
n−j (σj+1 · · ·σn) =

BU2D
2 (21) = 0. And we have BU2D

n (σ) = BU2D
9 (435768921) = 2 because the

subsequence 4576892 (as well as several others) corresponds to UUDUUD.

Generically, BU2D
n (σ) is the sum of two terms. One of the terms is

AU
2D

j−1 (red(σ1 · · ·σj−1)), which counts the number of full sets of UUD and

then adds one for an extra U . This extra U , along with σj = n and σj+1 sup-

ply an additional full set UUD which was counted by AU
2D

j−1 (red(σ1 · · ·σj−1))
(via the adding one for the extra U). The other term is BU2D

n−j (σj+1 · · ·σn),

which counts the remaining sets of UUD.

The second line of (2.7) is obtained using the following rather obvious

equality instead of (2.9):

BU2D
n (σ) = BU2D

n−1 (σ1 · · ·σn−1), if σn = n.
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The second line of (2.8) follows from the equality

(2.10)

AU
2D

n (σ) =
(
AU

2D
j−1 (red(σ1 · · ·σj−1)) +AU

2D
n−j (σj+1 · · ·σn)

)
1
AU

2D
n−j (σj+1···σn)6=0

+(
BU2D
j−1 (red(σ1 · · ·σj−1)) + 1

)
1
AU

2D
n−j (σj+1···σn)=0

, if σj = n, for j ∈ [n− 1], n ≥ 2,

along with the fact noted above that under the conditioned measure P
av(132)
n |{σj =

n}, the permutation red(σ1 · · ·σj−1) ∈ Sj−1 has the distribution P
av(132)
j−1 , the

permutation σj+1 · · ·σn ∈ Sn−j has the distribution P
av(132)
n−j , and these two

permutations are independent.

In the case that AU
2D

n−j (σj+1 · · ·σn) 6= 0, (2.10) is obtained by reasoning

similar to that for (2.9). We explain (2.10) in the case thatAU
2D

n−j (σj+1 · · ·σn) =

0 with an example. Let σ = 435786921 (slightly different than the σ used

above). So n = 9 and j = 7. We have AU
2D

n−j (σj+1 · · ·σn) = AU
2D

2 (21) = 0.

We have BU2D
j−1 (red(σ1 · · ·σj−1)) = BU2D

6 (red(435786)) = BU2D
6 (213564) =

1 because the subsequence 2354 (as well as several others) corresponds to

UUD. And we have AU
2D

n (σ) = AU
2D

9 (435786921) = 2 because the sub-

sequence 45769 (as well as several others) corresponds to UUDU . (Note

that AU
2D

j−1 (red(σ1 · · ·σj−1)) = AU
2D

6 (red(435786)) = AU
2D

6 (213564) = 1

because the subsequence 23 (as well as several others) corresponds to U .

Thus, when AU
2D

n−j (σj+1 · · ·σn) = 0, it is not true in general that AU
2D

n (σ) =

AU
2D

j−1 (red(σ1 · · ·σj−1)) +AU
2D

n−j (σj+1 · · ·σn).)

The first line of (2.8) is obtained using the following rather obvious equal-

ity instead of (2.10):

AU
2D

n (σ) = AU
2D

n−1 (σ2 · · ·σn), if σ1 = n.

�

From (2.5) and (2.7), it follows that

(2.11)

bn = Eav(132)
n BU2D

n =
n∑
j=1

Eav(132)
n (BU2D

n |σj = n)P av(132)
n (σj = n) =

n−1∑
j=1

(
E

av(132)
j−1 AU

2D
j−1 + E

av(132)
n−j BU2D

n−j

) Cj−1Cn−j
Cn

+ E
av(132)
n−1 BU2D

n−1
Cn−1C0

Cn
=

n−1∑
j=1

(aj−1 + bn−j)
Cj−1Cn−j

Cn
+ bn−1

Cn−1C0

Cn
, n ≥ 2.



LONGEST SUBSEQUENCE OF REPEATED UP/DOWN PATTERNS 11

Multiplying both sides of (2.11) by Cnt
n, summing over n from 4 to∞, and

using (2.6), we obtain

(2.12)

BU2D(t) =

∞∑
n=4

Cnbnt
n = t

∞∑
n=4

n−1∑
j=1

(aj−1 + bn−j)Cj−1Cn−j

 tn−1+

t
∞∑
n=4

bn−1Cn−1t
n−1.

Straightforward algebraic calculations along with (2.6) show that

(2.13)

∞∑
n=4

n−1∑
j=1

aj−1Cj−1Cn−j

 tn−1 = AU2D(t) (C(t)− 1) ;

∞∑
n=4

n−1∑
j=1

bn−jCj−1Cn−j

 tn−1 = BU2D(t)C(t).

From (2.12) and (2.13), we obtain

BU2D(t) = t
(
AU2D(t) (C(t)− 1) + BU2D(t)C(t) + BU2D(t)

)
,

which we write as

(2.14) BU2D(t) =
t (C(t)− 1)AU2D(t)

1− t− tC(t)
.

Note that for l ∈ N and σ ∈ Sl(132), AU
2D

l (σ) = 0 only for σ = l · · · 21;

thus P
av(132)
l (AU

2D
l = 0) = 1

Cl
. Using this with (2.5) and (2.8), it follows

that

(2.15)

an = Eav(132)
n AU

2D
n =

n∑
j=1

Eav(132)
n (AU2D

n |σj = n)P av(132)
n (σj = n) =

C0Cn−1
Cn

an−1 +
n∑
j=2

(
aj−1

(
1− 1

Cn−j

)
+ an−j

)
Cj−1Cn−j

Cn
+

n∑
j=2

bj−1 + 1

Cn−j

Cj−1Cn−j
Cn

.
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Multiplying both sides of (2.15) by Cnt
n, summing over n from 2 to ∞ and

using (2.6), we obtain

(2.16)

AU2D(t) =

∞∑
n=2

Cnant
n =

t
∞∑
n=2

Cn−1an−1t
n−1 + t

∞∑
n=2

 n∑
j=2

aj−1Cj−1Cn−j

 tn−1 − t
∞∑
n=2

( n∑
j=2

aj−1Cj−1
)
tn−1+

t
∞∑
n=2

 n∑
j=2

Cj−1an−jCn−j

 tn−1 + t
∞∑
n=2

 n∑
j=2

bj−1Cj−1

 tn−1 + t
∞∑
n=2

 n∑
j=2

Cj−1

 tn−1.

Straightforward algebraic calculations along with (2.6) show that

(2.17)

∞∑
n=2

 n∑
j=2

aj−1Cj−1Cn−j

 tn−1 = AU2D(t)C(t);

∞∑
n=2

 n∑
j=2

Cj−1an−jCn−j

 tn−1 = AU2D(t) (C(t)− 1) ;

∞∑
n=2

( n∑
j=2

aj−1Cj−1
)
tn−1 =

AU2D(t)

1− t
;

∞∑
n=2

( n∑
j=2

bj−1Cj−1
)
tn−1 =

BU2D(t)

1− t
;

∞∑
n=2

( n∑
j=2

Cj−1
)
tn−1 =

C(t)− 1

1− t
.

From (2.16) and (2.17), we obtain

(2.18)

AU2D(t) = t

(
AU2D(t) +AU2D(t)C(t)− A

U2D(t)

1− t
+AU2D(t) (C(t)− 1) +

BU2D(t)

1− t
+
C(t)− 1

1− t

)
,

which we write as

(2.19) AU2D(t) =
t
(
BU2D(t) + C(t)− 1

)
(1− t) (1− 2tC(t)) + t

.
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Substituting (2.19) in (2.14) and solving for BU2D(t), we obtain

(2.20) BU2D(t) =
t2 (C(t)− 1)2

((1− t)(1− 2tC(t)) + t) (1− t− tC(t))− t2(C(t)− 1)
.

We write the denominator in (2.20) as

(2.21)
((1− t)(1− 2tC(t)) + t) (1− t− tC(t))− t2(C(t)− 1) =

t2 − t+ 1 + (−2t3 + 3t2 − 3t)C(t) + 2t2(1− t)C2(t).

Using (2.4) and performing some algebra, we have

(2.22)

t2 − t+ 1 + (−2t3 + 3t2 − 3t)C(t) + 2t2(1− t)C2(t) =

1

2

(
(2t2 − t+ 1)

√
1− 4t+ (1− t)(1− 4t)

)
.

Using (2.4), the numerator in (2.20) can be written as.

(2.23) t2(C(t)− 1)2 =
1

2

(
2t2 − 4t+ 1 + (2t− 1)

√
1− 4t

)
.

From (2.20)-(2.23), we obtain

(2.24) BU2D(t) =
2t2 − 4t+ 1 + (2t− 1)

√
1− 4t

(2t2 − t+ 1)
√

1− 4t+ (1− t)(1− 4t)
.

In order to eliminate the square root from the denominator, we multiply the

numerator and denominator on the right hand side of (2.24) by the conjugate

of the denominator, −(2t2 − t+ 1)
√

1− 4t+ (1− t)(1− 4t). Performing the

algebra, the new denominator can be written as −4t(1 − 4t)(t3 − t + 1).

Performing the algebra to calculate the new numerator, and dividing the

new numerator and the new denominator by t(1− 4t), we obtain

(2.25) BU2D(t) =
N(t)

D(t)
,

where

(2.26)
tN(t) = (2t2 − 4t+ 1)(1− t) + (2t− 1)(1− t)(1− 4t)

1
2

− (2t2 − 4t+ 1)(2t2 − t+ 1)(1− 4t)−
1
2 − (2t− 1)(2t2 − t+ 1)

and

(2.27) D(t) = −4(t3 − t+ 1).

For a function f represented by a power series as f(t) =
∑∞

n=0 fnt
n, we

use the notation [tn]f(t) = fn. From [5, p. 381], we have

(2.28) [tn] (1− 4t)−α = 4n
nα−1

Γ(α)

(
1 +O

(
1

n

))
, for α ∈ C− Z≤0.
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From the transfer theorem [5, Theorem VI.3, p. 390, Example VI.2, p. 395]

and (2.28), it follows that if g(t) is analytic in a disk, centered at the origin,

of radius larger than 1
4 , then

(2.29) [tn]g(t) (1− 4t)−α = g(
1

4
)4n

nα−1

Γ(α)

(
1 +O

(
1

n

))
, for α ∈ C− Z≤0.

From (2.29) it follows immediately that

(2.30)

[tn]g(t)tb (1− 4t)−α = g(
1

4
)4n−b

nα−1

Γ(α)

(
1 +O

(
1

n

))
, for b ∈ Z and α ∈ C−Z≤0.

Noting that all of the roots of D(t) have absolute value greater than 1
4 ,

and applying (2.30) with α ∈ {12 ,−
1
2} and g(t) = − 1

D(t) to (2.25)-(2.27), it

follows that the leading order contribution to [tn]BU2D(t) as n→∞ comes

from the term
1
t
(2t2−4t+1)(2t2−t+1)(1−4t)−

1
2

4(t3−t+1)
= 4t3−10t2+8t−5+t−1

4(t3−t+1)
(1 − 4t)−

1
2 .

Noting that Γ(12) =
√
π and g(14) = − 1

D( 1
4
)

= 16
49 it follows from (2.30) that

(2.31)

[tn]BU2D(t) ∼ 16

49
4n
n−

1
2

√
π

(
4 · 4−3 − 10 · 4−2 + 8 · 4−1 − 5 + 4

)
=

1

7
4n
n−

1
2

√
π
.

From (2.3) and (2.2), we have [tn]BU2D(t) = Cnbn = CnE
av(132)
n BU2D

n , and

as is well known, the Catalan numbers satisfy Cn ∼ 4n n
− 3

2√
π

. Using these

facts with (2.31), we conclude that

(2.32) Eav(132)
n BU2D

n ∼ 1

7
n.

Now Theorem 1 follows from (2.32) and (2.1). �

3. Derivation of the generating functions for Theorem 2

For σ ∈ Sn and n ∈ N, define BU3D
n (σ) to be the number of complete sets

of UUUD in a longest subsequence in σ of the repeated pattern UUUD.

Thus,

(3.1) BU3D
n (σ) =


1
4

(
LU

3D
n (σ)− 1

)
, if LU

3D
n (σ) 6= 0;

0, if LU
2D

n (σ) = 0.

Also, for convenience, we define BU3D
0 ≡ 0.

For σ ∈ Sn and n ∈ N, define GU
3D

n (σ) = 0, if σ = n · · · 21; otherwise, find

a longest subsequence {σij}4k+2
j=1 , k ∈ Z+, of σ for which the up/down pattern

is UUUD · · ·UUUDU , and define GU
3D

n (σ) = k + 1. For convenience, we

define GU
3D

0 ≡ 0.
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For σ ∈ Sn and n ∈ N, define AU
3D

n (σ) = 0, if σ has no increas-

ing subsequence of length three (or equivalently, if σ has no subsequence

{σij}3j=1 which corresponds to the pattern UU); otherwise, find a longest

subsequence {σij}4k+3
j=1 , k ∈ Z+, of σ for which the up/down pattern is

UUUD · · ·UUUDUU , and define AU
3D

n (σ) = k + 1. For convenience, we

define AU
3D

0 ≡ 0.

In the sequel, for j ∈ N, BU3D
j , GU

3D
j and AU

3D
j will always be considered

as random variables on the probability space
(
Sj(132), P

av(132)
j

)
. Define

(3.2) bn = Eav(132)
n BU3D

n ; gn = Eav(132)
n GU

3D
n ; an = Eav(132)

n AU
3D

n ,

where we have suppressed the notation U3D.

Define the generating functions for {Cnbn}∞n=0, {Cngn}∞n=0 and {Cnan}∞n=0

by

(3.3)

BU3D(t) =
∞∑
n=0

Cnbnt
n;

GU3D(t) =
∞∑
n=0

Cngnt
n;

AU3D(t) =
∞∑
n=0

Cnant
n.

We will derive a system of three linear equations for BU3D(t), GU3D(t)

and AU3D(t) and then solve for one of them explicitly. From the definitions

of BU3D
n , GU

3D
n and AU

3D
n , we have

BU3D
n ≡ 0, 0 ≤ n ≤ 4; GU

3D
n ≡ 0, 0 ≤ n ≤ 1; AU

3D
n = 0, 0 ≤ n ≤ 2.

Thus,

(3.4)

bn = 0, 0 ≤ n ≤ 4;

gn = 0, 0 ≤ n ≤ 1;

an = 0, 0 ≤ n ≤ 2.

The following proposition is the key to obtaining a set of three linear equa-

tions for the generating functions BU3D(t), GU3D(t) and AU3D(t).

Proposition 2. i.

(3.5)
BU3D
n |{σj = n} dist

= AU
3D

j−1 +BU3D
n−j , j ∈ [n− 1], n ≥ 2;

BU3D
n |{σn = n} dist

= BU3D
n−1 , n ≥ 2,
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where on the right hand side of (3.5), AU
3D

j−1 and BU3D
n−j are understood to be

independent.

ii.

(3.6)

GU
3D

n |{σ1 = n} dist
= GU

3D
n−1 , n ≥ 2;

GU
3D

n |{σj = n} dist
=
(
AU

3D
j−1 +GU

3D
n−j

)
1{GU3D

n−j 6=0} +
(
BU2D
j−1 + 1

)
1{GU3D

n−j =0},

j ∈ {2, · · · , n}, n ≥ 2,

where on the right hand side of (3.6), AU
3D

j−1 and GU
3D

n−j are understood to be

independent and BU3D
j−1 and GU

3D
n−j are understood to be independent.

iii.

(3.7)

AU
3D

n |{σ1 = n} dist
= AU

3D
n−1 , n ≥ 2;

AU
3D

n |{σj = n} dist
=
(
AU

3D
j−1 +AU

3D
n−j

)
1{AU3D

n−j 6=0} +GU
3D

j−1 1{AU3D
n−j =0},

j ∈ {2, · · · , n}, n ≥ 2,

where on the right hand side of (3.7), AU
3D

j−1 and AU
3D

n−j are understood to be

independent and GU
3D

j−1 and AU
3D

n−j are understood to be independent.

Proof. The proof is similar to that of Proposition 1. The first line of (3.5)

and the second lines of (3.6) and (3.7) follow from the rather obvious equal-

ities
BU3D
n (σ) = BU3D

n−1 (σ1 · · ·σn−1), if σn = n;

GU
3D

n (σ) = GU
3D

n−1 (σ2 · · ·σn), if σ1 = n;

AU
3D

n (σ) = AU
3D

n−1 (σ2 · · ·σn), if σ1 = n.

Recall the notation red(σ) that was introduced in the paragraph contain-

ing (2.5). The first line of (3.5) follows from the equality

(3.8)
BU3D
n (σ) = AU

3D
j−1 (red(σ1 · · ·σj−1)) +BU3D

n−j (σj+1 · · ·σn), if σj = n,

for j ∈ [n− 1], n ≥ 2,

along with the fact that under the conditioned measure P
av(132)
n |{σj = n},

the permutation red(σ1 · · ·σj−1) ∈ Sj−1 has the distribution P
av(132)
j−1 , the

permutation σj+1 · · ·σn ∈ Sn−j has the distribution P
av(132)
n−j , and these two

permutations are independent. The explanation for (3.8) is essentially the

same as the explanation for (2.9). Generically, BU3D
n (σ) is the sum of two

terms. One of the terms is AU
3D

j−1 (red(σ1 · · ·σj−1)), which counts the number

of full sets of U3D and then adds one for an extra UU . This extra UU , along
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with σj = n and σj+1 supply an additional full set U3D which was counted

by AU
3D

j−1 (red(σ1 · · ·σj−1)) (via the adding one for the extra UU). The other

term is BU3D
n−j (σj+1 · · ·σn), which counts the remaining sets of U3D.

The second line of (3.6) follows from the equality

(3.9)

GU
3D

n (σ) =
(
AU

3D
j−1 (red(σ1 · · ·σj−1)) +GU

3D
n−j (σj+1 · · ·σn)

)
1
GU

3D
n−j (σj+1···σn)6=0

+(
BU2D
j−1 (red(σ1 · · ·σj−1)) + 1

)
1
GU

3D
n−j (σj+1···σn)=0

,

if σj = n, for j ∈ [n− 1], n ≥ 2,

along with the fact that under the conditioned measure P
av(132)
n |{σj = n},

the permutation red(σ1 · · ·σj−1) ∈ Sj−1 has the distribution P
av(132)
j−1 , the

permutation σj+1 · · ·σn ∈ Sn−j has the distribution P
av(132)
n−j , and these two

permutations are independent. The explanation for (3.9) in the case that

GU
3D

n−j (σj+1 · · ·σn) 6= 0 is similar to the reasoning for (3.8). We explain

(3.9) in the case that GU
3D

n−j (σj+1 · · ·σn) = 0 with an example, the same

example used to explain (2.10) in the case that AU
2D

n−j (σj+1 · · ·σn) = 0. Con-

sider σ = 435786921. So n = 9 and j = 7. We have GU
3D

n−j (σj+1 · · ·σn) =

GU
3D

2 (21) = 0. We have BU3D
j−1 (red(σ1 · · ·σj−1)) = BU3D

6 (red(435786)) =

BU3D
6 (213564) = 1 because the subsequence 23564 (as well as 13564) cor-

responds to U3D. And we have GU
3D

n (σ) = GU
3D

9 (435786921) = 2 because

the subsequence 457869 (as well as 357869) corresponds to U3DU . (Note

that AU
3D

j−1 (red(σ1 · · ·σj−1)) = AU
3D

6 (red(435786)) = AU
3D

6 (213564) = 1

because the subsequence 235 (as well as several others) corresponds to

UU . Thus, when GU
3D

n−j (σj+1 · · ·σn) = 0, it is not true in general that

GU
3D

n (σ) = AU
3D

j−1 (red(σ1 · · ·σj−1)) +GU
3D

n−j (σj+1 · · ·σn).)

The second line of (3.7) follows from the equality

(3.10)

AU
3D

n (σ) =
(
AU

3D
j−1 (red(σ1 · · ·σj−1)) +AU

3D
n−j (σj+1 · · ·σn)

)
1
AU

3D
n−j (σj+1···σn)6=0

+(
GU

3D
j−1 (red(σ1 · · ·σj−1))

)
1
AU

3D
n−j (σj+1···σn)=0

,

if σj = n, for j ∈ [n− 1], n ≥ 2,

along with the fact that under the conditioned measure P
av(132)
n |{σj = n},

the permutation red(σ1 · · ·σj−1) ∈ Sj−1 has the distribution P
av(132)
j−1 , the

permutation σj+1 · · ·σn ∈ Sn−j has the distribution P
av(132)
n−j , and these two

permutations are independent. The explanation for (3.10) in the case that
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AU
3D

n−j (σj+1 · · ·σn) 6= 0 is similar to the reasoning for (3.8). We explain

(3.10) in the case that AU
3D

n−j (σj+1 · · ·σn) = 0 with an example. Consider

σ = 786543921. So n = 9 and j = 7. We have AU
3D

n−j (σj+1 · · ·σn) =

AU
3D

2 (21) = 0. We have GU
3D

j−1 (red(σ1 · · ·σj−1)) = GU
3D

6 (red(786543)) =

GU
3D

6 (564321) = 1 because the subsequence 56 corresponds to U . And we

have AU
3D

n (σ) = AU
3D

9 (786543921) = 1 because the subsequence 789 corre-

sponds to UU . (Note that AU
3D

j−1 (red(σ1 · · ·σj−1)) = AU
3D

6 (red(786543)) =

AU
3D

6 (564321) = 0. Thus, the equality AU
3D

n (σ) = AU
3D

j−1 (red(σ1 · · ·σj−1))+

AU
3D

n−j (σj+1 · · ·σn) is not true in general when AU
3D

n−j (σj+1 · · ·σn) = 0.) �

We now use Proposition 2 to derive a system of three linear equations

for BU3D(t), GU3D(t) and AU3D(t). Note from (2.7) and (3.5) that the con-

ditional distributions of BU2D(t) and BU3D(t) are exactly the same except

that AU
2D(t) in (2.7) is replaced by AU

3D(t) in (3.5). Thus, it follows from

(2.14) that

(3.11) BU3D(t) =
t (C(t)− 1)AU3D(t)

1− t− tC(t)
.

We now turn to GU3D(t). Note that for l ∈ N and σ ∈ Sl(132), GU
3D

l (σ) =

0 only for σ = l · · · 21; thus P
av(132)
l (GU

3D
l = 0) = 1

Cl
. Using this with (2.5)

and (3.6), it follows that

(3.12)

gn = Eav(132)
n GU

3D
n =

n∑
j=1

Eav(132)
n (GU

3D
n |σj = n)P av(132)

n (σj = n) =
C0Cn−1
Cn

gn−1+

n∑
j=2

(
aj−1

(
1− 1

Cn−j

)
+ gn−j

)
Cj−1Cn−j

Cn
+

n∑
j=2

bj−1 + 1

Cn−j

Cj−1Cn−j
Cn

.

Multiplying both sides of (3.12) by Cnt
n, summing over n from 2 to ∞ and

using (3.4), we obtain

(3.13)

GU3D(t) =

∞∑
n=2

Cngnt
n =

t
∞∑
n=2

Cn−1gn−1t
n−1 + t

∞∑
n=2

 n∑
j=2

aj−1Cj−1Cn−j

 tn−1 − t
∞∑
n=2

( n∑
j=2

aj−1Cj−1
)
tn−1+

t

∞∑
n=2

 n∑
j=2

Cj−1gn−jCn−j

 tn−1 + t

∞∑
n=2

 n∑
j=2

bj−1Cj−1

 tn−1 + t

∞∑
n=2

 n∑
j=2

Cj−1

 tn−1.
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Considerations almost identical to those that led from (2.16) to (2.18) yield

(3.14)

GU3D(t)(t) = t

(
GU3D(t)(t) +AU3D(t)(t)C(t)− A

U3D(t)(t)

1− t
+ GU3D(t)(t) (C(t)− 1) +

BU3D(t)

1− t
+
C(t)− 1

1− t

)
,

which we write as

(3.15)

GU3D(t)(t) =

(
tC(t)− t

1−t

)
AU3D(t) + t

1−tB
U3D(t) + t

1−t (C(t)− 1)

1− tC(t)
.

We now turn to AU3D(t). We need the following lemma.

Lemma 1.

(3.16) P
av(132)
l (AU

3D
l = 0) =

2l−1

Cl
, l ∈ N.

Proof. For convenience, define

(3.17)
γl = P

av(132)
l (AU

3D
l = 0), l ∈ N;

γ0 = 1.

For σ ∈ Sl, distributed as P
av(132)
l , and conditioned on σi = l, the per-

mutations red(σ1 · · ·σi−1) and σi+1 · · ·σl are independent and distributed

respectively as P
av(132)
i−1 and P

av(132)
l−i . If σi = l, then AU

3D
l (σ) = 0 if

and only if GU
3D

i−1 (red(σ1 · · ·σi−1)) = 0 and AU
3D

l−i (σi+1 · · ·σl) = 0. Now

GU
3D

i−1 (red(σ1 · · ·σi−1)) = 0 if and only if red(σ1 · · ·σi−1) = i−1 · · · 21. Thus,

P
av(132)
i−1

(
GU

3D
i−1 (red(σ1 · · ·σi−1)) = 0

)
= 1

Ci−1
. Therefore, we have

P
av(132)
l

(
AU

3D
l (σ) = 0|σi = l

)
=

γl−i
Ci−1

.

Consequently,

γl = P
av(132)
l (AU

3D
l = 0) =

l∑
i=1

Ci−1Cl−i
Cl

γl−i
Ci−1

=

l∑
i=1

Cl−iγl−i
Cl

,

which we write as

(3.18) kl =

l−1∑
i=0

ki, ki = Ciγi.
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Multiply both sides of (3.18) by tl and write the resulting equation as

(3.19) klt
l = t

l−1∑
i=0

kit
itl−1−i.

Let K(t) =
∑∞

l=0 klt
l. Summing (3.19) over l from 1 to∞, one obtains after

some algebra

K(t) = 1 +
tK(t)

1− t
,

which yields

(3.20) K(t) =
1− t
1− 2t

= 1 +
t

1− 2t
= 1 +

∞∑
l=1

2l−1tl.

Thus, Clγl = kl = 2l−1, l ≥ 1. Consequently P
av(132)
l (AU

3D
l = 0) = γl =

2l−1

Cl
. �

Using (3.17) with (2.5) and (3.7), it follows that

(3.21)

an = Eav(132)
n AU

3D
n =

n∑
j=1

Eav(132)
n (AU

3D
n |σj = n)P av(132)

n (σj = n) =

C0Cn−1
Cn

an−1 +

n∑
j=2

(aj−1 (1− γn−j) + an−j)
Cj−1Cn−j

Cn
+

n∑
j=2

gj−1γn−j
Cj−1Cn−j

Cn
.

Multiplying both sides of (3.21) by Cnt
n and summing over n from 2 to ∞,

and recalling (3.4), we obtain

(3.22)

AU3D(t) =
∞∑
n=2

Cnant
n = t

∞∑
n=2

Cn−1an−1t
n−1 + t

∞∑
n=2

 n∑
j=2

Cj−1aj−1Cn−j

 tn−1−

t

∞∑
n=2

 n∑
j=2

Cj−1aj−1γn−jCn−j

 tn−1 + t

∞∑
n=2

 n∑
j=2

Cj−1Cn−jan−j

 tn−1+

t
∞∑
n=2

 n∑
j=2

Cj−1gj−1γn−jCn−j

 tn−1.
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By (3.18), γn−jCn−j = kn−j . Using this with (3.20), we have

(3.23)
∞∑
n=2

 n∑
j=2

Cj−1aj−1γn−jCn−j

 tn−1 =

∞∑
n=2

 n∑
j=2

Cj−1aj−1kn−j

 tn−1 =

K(t)AU3D(t) =
1− t
1− 2t

AU3D(t);

∞∑
n=2

 n∑
j=2

Cj−1gj−1γn−jCn−j

 tn−1 =
∞∑
n=2

 n∑
j=2

Cj−1gj−1kn−j

 tn−1 =

K(t)GU3D(t) =
1− t
1− 2t

GU3D(t).

The two terms on the left hand sides of (3.23) appear on the right hand side

of (3.22). The other terms on the right hand side of (3.22) can be treated via

straightforward algebraic calculations, similar to what was done in previous

calculations. This allows for (3.22) to be written term by term as

AU3D(t) = tAU3D(t) + tAU3D(t)C(t)− 1− t
1− 2t

AU3D(t)+

tAU3D(t) (C(t)− 1) +
1− t
1− 2t

GU3D(t),

which yields

(3.24) AU3D(t) =

t(1−t)
1−2t G

U3D(t)

1− 2tC(t) + t(1−t)
1−2t

.

Now (3.11), (3.15) and (3.24) provide a system of three linear equations

for the three generating functions BU3D(t),GU3D(t) and AU3D(t). Since

GU
3D

n (σ), AU
3D

n (σ) ∈ {BU3D
n (σ) − 1, BU3D

n (σ), BU3D
n (σ) + 1}, for all n ∈ N

and all σ ∈ Sn, the leading order asymptotic behavior is the same for

E
av(132)
n BU3D

n , E
av(132)
n GU

3D
n and E

av(132)
n AU

3D
n . Thus, it doesn’t matter

which of the generating functions we solve for. We will solve for GU3D(t).

We start with (3.15), and replace the term BU3D(t) on the right hand side

of (3.15) with the right hand side of (3.11). After rearranging some terms,

this gives

(3.25)

GU3D(t) =
t(C(t)− 1)

(1− t) (1− tC(t))
+(

tC(t)− t

1− t
+

t2(C(t)− 1)

(1− t) (1− t− tC(t))

)
1

1− tC(t)
AU3D(t).
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Now we replace AU3D(t) on the right hand side of (3.25) with the right hand

side of (3.24). This yields an equation in which only the generating function

GU3D(t) appears. Solving for GU3D(t), we obtain

(3.26)

GU3D(t) =
t(C(t)− 1)

(1− t) (1− tC(t)) (1− d1(t))
, where

d1(t) =

(
tC(t)− t

1− t
+

t2(C(t)− 1)

(1− t)(1− t− tC(t))

)(
1

1− tC(t)

)(
t(1− t)
1− 2t

)
×(

1

1− 2tC(t) + t(1−t)
1−2t

)
.

4. Completion of the proof of Theorem 2

In (3.26), when we perform the multiplication (1 − t) (1− tC(t)) d1(t),

the second of the four factors in d1(t) will disappear, and the 1 − t in the

denominator of two of the terms in the first factor will also disappear. We

obtain

(4.1)

(1− t) (1− tC(t)) d1(t) =

(
(1− t)tC(t)− t+

t2(C(t)− 1)

1− t− tC(t)

)(
t(1− t)
1− 2t

)
×(

1

1− 2tC(t) + t(1−t)
1−2t

)
.

Multiplying the denominators of the second and third factors on the right

hand side of (4.1), we have

(4.2) (1− 2t)

(
1− 2tC(t) +

t(1− t)
1− 2t

)
= 1− t− t2 − 2tC(t) + 4t2C(t).

Thus, multiplying both the numerator and the denominator on the right

hand side of (3.26) by 1 − t − t2 − 2tC(t) + 4t2C(t), and using (4.1) and

(4.2), we obtain

(4.3) GU3D(t) =
t(C(t)− 1)

(
1− t− t2 − 2tC(t) + 4t2C(t)

)
d2(t)

,

where

(4.4)

d2(t) = (1− t)(1− tC(t))
(
1− t− t2 − 2tC(t) + 4t2C(t)

)
−(

(1− t)tC(t)− t+
t2(C(t)− 1)

1− t− tC(t)

)
t(1− t).
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Multiplying the numerator and the denominator on the right hand side of

(4.3) by 1− t− tC(t), and using (4.4), we obtain

(4.5) GU3D(t) =
n(t)

d(t)
,

where

(4.6)
n(t) = t(C(t)− 1)

(
1− t− t2 − 2tC(t) + 4t2C(t)

)
(1− t− tC(t)) ;

d(t) = (1− t)(1− tC(t))
(
1− t− t2 − 2tC(t) + 4t2C(t)

)
(1− t− tC(t))−(

((1− t)tC(t)− t) (1− t− tC(t)) + t2(C(t)− 1)
)
t(1− t).

Grouping powers of C(t), we have

(4.7)
n(t) = A3(t)C

3(t) +A2(t)C
2(t) +A1(t)C(t) +A0(t);

d(t) = B3(t)C
3(t) +B2(t)C

2(t) +B1(t)C(t) +B0(t),

where

(4.8)

A3(t) = 2t3 − 4t2; A2(t) = t4 + 5t3 − 3t2;

A1(t) = 4t4 − 7t3 + t2 + t; A0(t) = −t4 + 2t2 − t;

B3(t) = −4t5 + 6t4 − 2t3; B2(t) = −2t5 + 12t4 − 15t3 + 5t2;

B1(t) = 2t5 + t4 − 11t3 + 12t2 − 4t; B0(t) = −t4 + 3t2 − 3t+ 1.

Recalling the formula for C(t) in (2.4), we have

(4.9)
C2(t) =

1− 2t−
√

1− 4t

2t2
;

C3(t) =
1− 3t− (1− t)

√
1− 4t

2t3
.

Letting

R :=
√

1− 4t

and substituting from (2.4) and (4.9) in (4.7), we obtain after a lot of algebra

(4.10)

n(t) =

(
−(1− t)A3(t)

2t3
− A2(t)

2t2
− A1(t)

2t

)
R+

(1− 3t)A3(t)

2t3
+

(1− 2t)A2(t)

2t2
+
A1(t)

2t
+A0(t);

d(t) =

(
−(1− t)B3(t)

2t3
− B2(t)

2t2
− B1(t)

2t

)
R+

(1− 3t)B3(t)

2t3
+

(1− 2t)B2(t)

2t2
+
B1(t)

2t
+B0(t).
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Using (4.8), one finds that

(4.11)

− (1− t)A3(t)

2t3
− A2(t)

2t2
− A1(t)

2t
= t2(1− 2t);

(1− 3t)A3(t)

2t3
+

(1− 2t)A2(t)

2t2
+
A1(t)

2t
+A0(t) = t3(1− t);

− (1− t)B3(t)

2t3
− B2(t)

2t2
− B1(t)

2t
= −t4 − 3

2
t3 +

9

2
t2 − 5

2
t+

1

2
;

(1− 3t)B3(t)

2t3
+

(1− 2t)B2(t)

2t2
+
B1(t)

2t
+B0(t) = 2t4 − 13

2
t3 +

15

2
t2 − 7

2
t+

1

2
.

From (4.10) and (4.11), we have

(4.12)
n(t) = t2(1− 2t)R+ t3(1− t);

d(t) =

(
−t4 − 3

2
t3 +

9

2
t2 − 5

2
t+

1

2

)
R+ 2t4 − 13

2
t3 +

15

2
t2 − 7

2
t+

1

2
.

Recall that R =
√

1− 4t. In order to eliminate the square root in the

denominator d(t) in (4.12), we multiply the numerator and denominator by

the denominator’s conjugate, −
(
−t4 − 3

2 t
3 + 9

2 t
2 − 5

2 t+ 1
2

)
R+ 2t4− 13

2 t
3 +

15
2 t

2− 7
2 t+

1
2 . Calling the resulting numerator and denominator by n̄(t) and

d̄(t), this yields

(4.13)

n̄(t) =

(
−t6 − 9

2
t5 + 21t4 − 57

2
t3 +

35

2
t2 − 5t+

1

2

)√
1− 4t+

6t6 +
29

2
t5 − 58t4 +

119

2
t3 − 55

2
t2 + 6t− 1

2
;

d̄(t) = 4t7 + 15t6 − 56t5 + 45t4 + 4t3 − 19t2 + 8t− 1.

The new denominator factors as

(4.14)
d̄(t) = 4t7 + 15t6 − 56t5 + 45t4 + 4t3 − 19t2 + 8t− 1 =

(1− 4t)(1− t)2
(
−t4 − 6t3 + 2t2 + 2t− 1

)
.

The two polynomials in the new numerator n̄(t) factor as

(4.15)

− t6 − 9

2
t5 + 21t4 − 57

2
t3 +

35

2
t2 − 5t+

1

2
=

(1− t)2
(
−t4 − 13

2
t3 + 9t2 − 4t+

1

2

)
;

6t6 +
29

2
t5 − 58t4 +

119

2
t3 − 55

2
t2 + 6t− 1

2
=

(1− 4t)(1− t)
(

3

2
t4 +

11

2
t3 − 8t2 +

7

2
t− 1

2

)
.
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From (4.13)-(4.15) and (4.5), we conclude that

(4.16)

GU3D(t) =
−t4 − 13

2 t
3 + 9t2 − 4t+ 1

2

−t4 − 6t3 + 2t2 + 2t− 1
(1− 4t)−

1
2 +

3
2 t

4 + 11
2 t

3 − 8t2 + 7
2 t−

1
2

(1− t) (−t4 − 6t3 + 2t2 + 2t− 1)
.

The smallest absolute value among the roots of −t4 − 6t3 + 2t2 + 2t − 1

is larger than 1
4 ; thus, 1

−t4−6t3+2t2+2t−1 and 1
(1−t)(−t4−6t3+2t2+2t−1) are ana-

lytic in a ball centered at the origin of radius larger than 1
4 . Thus, applying

(2.30) in the case α = 1
2 with g(t) = 1

−t4−6t3+2t2+2t−1 and with g(t) =
1

(1−t)(−t4−6t3+2t2+2t−1) , it follows from (4.16) that the leading order asymp-

totic contribution to [tn]GU3D(t) comes from the term
−t4− 13

2
t3+9t2−4t+ 1

2
−t4−6t3+2t2+2t−1 (1− 4t)−

1
2 .

Since 1
−t4−6t3+2t2+2t−1 |t= 1

4
= −256

121 , we conclude from (2.30) that

(4.17)

[tn]GU3D(t) ∼ 256

121
4n
n−

1
2

√
π

(
4−4 +

13

2
· 4−3 − 9 · 4−2 + 4 · 4−1 − 1

2

)
=

256

121
4n
n−

1
2

√
π

11

256
=

1

11
4n
n−

1
2

√
π
.

From (3.3) and (3.2), we have [tn]GU3D(t) = Cngn = CnE
av(132)
n GU

3D
n . As

previously noted, the Catalan numbers satisfy Cn ∼ 4n n
− 3

2√
π

. Using these

facts with (4.17), we conclude that

(4.18) Eav(132)
n GU

3D
n ∼ 1

11
n.

Theorem 2 now follows from (4.18), (3.1) and the fact that the leading order

asymptotic behavior of E
av(132)
n BU3D

n and of E
av(132)
n GU

3D
n coincide. �
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