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Abstract. We study how the inversion statistic is influenced by fixed

points in a permutation. For each n ∈ N, and each k ∈ {0, 1, · · · , n}, let

P
(k)
n denote the uniform probability measure on the set of permutations

in Sn with exactly k fixed points. We obtain an exact formula for the

expected number of inversions under the measure P
(k)
n as well as for

P
(k)
n (σ−1

i < σ−1
j ), for 1 ≤ i < j ≤ n, the P

(k)
n -probability that the num-

ber i precedes the number j. In particular, up to a super-exponentially

small correction as n→∞, the expected number of inversions in a ran-

dom derangement (k = 0) is 1
6
n + 1

12
more than the value n(n−1)

4
that

one obtains for a uniformly random general permutation in Sn. On the

other hand, up to a super-exponentially small correction, for k ≥ 2, the

expected number of inversions in a random permutation with k fixed

points is k−1
6
n+ k2−k−1

12
less than n(n−1)

4
. In the borderline case, k = 1,

up to a super-exponentially small correction, the expected number of in-

versions in a random permutation with one fixed point is 1
12

more than
n(n−1)

4
. The proofs make strategic and perhaps novel use of the Chinese

restaurant construction for a uniformly random permutation.

1. Introduction and Statement of Results

In this paper, we study how the inversion statistic is influenced by fixed

points in a permutation. Let Pn denote the uniform probability measure on

the set Sn of permutations of [n] = {1, · · · , n}, and denote the expectation

with respect to Pn by En. We write σ ∈ Sn in one-line notation as σ =

σ1 · · ·σn. Recall that σ is a derangement if it has no fixed points; that is, if

σi 6= i, for all i ∈ [n]. Let Dn ⊂ Sn denote the set of derangements in Sn.

As is well-known [1, 3],

(1.1) Pn(Dn) =
n∑
l=0

(−1)l

l!
; lim

n→∞
Pn(Dn) = e−1.
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Let In(σ) denote the number of inversions in σ; that is,

In(σ) =
∑

1≤i<j≤n
1{σj<σi} =

∑
1≤i<j≤n

1{σ−1
j <σ−1

i }
.

(Note that σ−1i is the position of the number i in the permutation σ.) By

symmetry, one has EnIn = n(n−1)
4 . It is well-known that the law of large

numbers holds for In under the uniform probability measure Pn; that is,

(1.2) lim
n→∞

Pn

(
(1− ε)n

2

4
≤ In ≤ (1 + ε)

n2

4

)
= 1, for all ε > 0.

Denote the uniform probability measure on Dn by P
(0)
n ; that is,

P (0)
n (A) =

Pn(A ∩Dn)

Pn(Dn)
, A ⊂ Sn,

and let E
(0)
n denote the expectation with respect to P

(0)
n . From (1.1) and

(1.2) it follows that the law of large numbers also holds for In under the

measure P
(0)
n ; that is, (1.2) also holds with Pn replaced by P

(0)
n . From this

and the fact that maxσ∈Sn In(σ) = O(n2), if follows that E
(0)
n In ∼ n2

4 . What

about lower order terms in E
(0)
n In? Intuitively, it is easy to see that E

(0)
n In

should be larger than EnIn = n(n−1)
4 . Indeed, by symmetry considerations,

for any i ∈ [n], one has P
(0)
n (σ−1i = l) = 1

l−1 , l ∈ [n]−{i}. Thus under P
(0)
n ,

for 1 ≤ i < j ≤ n, the random variable σ−1i strictly stochastically dominates

the random variable σ−1j ; that is, P
(0)
n (σ−1i ≥ a) ≥ P

(0)
n (σ−1j ≥ a), for all

a ∈ R, and with strict inequality for at least one choice of a. Of course this

doesn’t prove anything rigorously about E
(0)
n In because σ−1i and σ−1j are

not independent. We will calculate E
(0)
n In and P

(0)
n (σ−1i < σ−1j ) explicitly,

allowing one to see how much greater E
(0)
n In is than EnIn and how much

smaller P
(0)
n (σ−1i < σ−1j ) is than Pn(σ−1i < σ−1j ).

We now turn to permutations with a prescribed non-zero number of fixed

points. For k ∈ N, let Dn;k denote the set of permutations in Sn with exactly

k fixed points; that is

Dn;k = {σ ∈ Sn : |{i ∈ [n] : σ(i) = i}| = k}.

For convenience, define Dn;0 = Dn. It is well-known [1, 2] that under the

uniform measure Pn,

(1.3) lim
n→∞

Pn(Dn;k) =
e−1

k!
, k = 0, 1, · · · ;

equivalently, under Pn, the random variable that counts the number of fixed

points converges in distribution to the Poisson distribution with parameter
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one. Let P
(k)
n denote the uniform probability measure on Dn;k; that is,

P (k)
n (A) =

Pn(A ∩Dn;k)

Pn(Dn;k)
, A ⊂ Sn,

and let E
(k)
n denote the expectation with respect to P

(k)
n . From (1.2) and

(1.3), it follows that (1.2) also holds with Pn replaced by P
(k)
n . Thus, as

with the case k = 0, we have E
(k)
n In ∼ n2

4 . Which do we expect to be

larger, E
(k)
n In or EnIn = n(n−1)

4 ? It is instructive to consider the extreme

case in which k = n. Note that P
(n)
n is the δ-measure on the identity

permutation; thus, E
(n)
n In = 0. It is not hard to see intuitively that the

larger k is, the smaller E
(k)
n In should be. Thus, there should be a threshold

value of k (perhaps depending on n), so that for k less than the threshold,

E
(k)
n In > EnIn and for k above the threshold, E

(k)
n In < EnIn. Since under

the uniform measure, the expected number of fixed points is easily seen to

be equal to one for all n, the candidate k = 1 is an intuitive choice for the

threshold, at least for sufficiently large n. We will calculate E
(k)
n In explicitly.

In particular, we will see that the above noted threshold is indeed k = 1,

and we will see what happens at the threshold k = 1.

The first theorem below concerns derangements and the second one treats

permutations with a prescribed non-zero number of fixed points.

Theorem 1. Let n ≥ 3. Then

i.

(1.4)

E(0)
n In =

n(n− 1)

4
+

1

6
n+

1

12
+

(−1)n
n!∑n

l=0
(−1)l
l!

(
n− 1

12

)
=

n(n− 1)

4
+

1

6
n+

1

12
+O

(
1

(n− 1)!

)
.

ii.

(1.5)

P (0)
n (σ−1i < σ−1j ) =

1

2
+

(
1− 2(j − i)

)
n+ 2(j − i)

2n(n− 1)(n− 2)
+

(−1)n
n!∑n

l=0
(−1)l
l!

2(j − i)− n
2n(n− 2)

=

1

2
+

(
1− 2(j − i)

)
n+ 2(j − i)

2n(n− 1)(n− 2)
+O

(
1

(n+ 1)!

)
.
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Theorem 2. Let n ≥ 3 and let k ∈ {1, 2, · · · , n}. Then

i.

(1.6)

E(k)
n In =

n(n− 1)

4
− k − 1

6
n− k2 − k − 1

12
+

(−1)n−k

(n−k)!∑n−k
l=0

−1)l
l!

(
n− k − 1

12

)
=

n(n− 1)

4
− k − 1

6
n− k2 − k − 1

12
+O

(
1

(n− k − 1)!

)
.

ii.

(1.7)

P (k)
n (σ−1i < σ−1j ) =

1

2
+

1

2n(n− 1)(n− 2)

( (
2(k − 1)(j − i) + k2 − 3k + 1

)
n− 2(k2 − k − 1)(j − i)

)
+

O

(
1

(n− k)!

)
.

Remark. The precise formula for the term O
(

1
(n−k)!

)
in (1.7) can be found

at the end of the paper in (3.32).

We now make some observations and comments regarding the above the-

orems. We begin with the expectation of In in part (i) of Theorems 1 and

2. From part (i) of Theorem 1, one sees that up to a super-exponentially

small correction as n→∞, the expected number of inversions in the case of

a random derangement is 1
6n+ 1

12 more than it is for a random general per-

mutation. On the other hand, from part (i) of Theorem 2, one sees that up

to a super-exponentially small correction, for k ≥ 2, the expected number of

inversions in a random permutation with k fixed points is k−1
6 n+ k2−k−1

12 less

than it is for a random general permutation. In particular, in both the case

of derangements (k = 0) and in the case k ≥ 2, this difference grows linearly

in n. Now consider the borderline case, k = 1. As we noted above, for all

n, the expected number of fixed points in a random general permutation

is one. Theorem 2 shows that for all n, up to a super-exponentially small

correction, the expected number of inversions in a random permutation with

one fixed point is 1
12 more than it is for a random general permutation.

As we noted above, the random variable that counts the number of fixed

points in a random general permutation of size n converges in distribution

as n → ∞ to the Poisson distribution with parameter one. Let X be a

random variable with this distribution. Then EX = 1 and EX2 = 2. Not
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surprisingly, if we substitute X for k in the expression k−1
6 n + k2−k−1

12 and

take the expectation, we obtain E(X−16 n+ X2−X−1
12 ) = 0.

Note that since Theorem 2 is true for all k ∈ {1, · · · , n}, one can let k de-

pend on n: k = kn with limn→∞ kn =∞. It follows from (1.6) that as long as

limn→∞
kn
n < 1, then asymptotically as n→∞, up to a super-exponentially

small correction the expected number of inversions in a random permuta-

tion with kn fixed points is kn−1
6 n + k2n−kn−1

12 less than it is for a random

general permutation. In particular, if kn = o(n), then the correction is on

the order nkn, so E
(kn)
n In ∼ EnIn ∼ n2

4 , but if kn ∼ cn, for c ∈ (0, 1), then

E
(kn)
n In ∼ 3−2c−c2

12 n2.

We now consider the probability of the event {σ−1i < σ−1j } in part (ii)

of Theorems 1 and 2. Consider first part (ii) of Theorem 1 and let i and j

depend on n: i = in, j = jn with in < jn. Then it follows from (1.5) that

0 ≤ 1

2
− P (0)

n (σ−1in < σ−1jn ) = θ(
jn − in
n2

).

Consider now part (ii) of Theorem 2. For i = in, j = jn with in < jn, and

k = kn ≥ 2, it follows from (1.7) that as long as limn→∞
kn
n < 1, then

0 ≤ P (0)
n (σ−1in < σ−1jn )− 1

2
= θ

(
kn(jn − in) ∧ k2n)

n2

)
.

However, for i = in, j = jn with in < jn, and k = 1, it follows from (1.7)

that

P (0)
n (σ−1in < σ−1jn ) =

1

2
+

1

2n(n− 1)(n− 2)

(
− n+ 2(jn − in)

)
+O(

1

(n− 1)!
).

Thus the sign of P
(0)
n (σ−1in < σ−1jn ) − 1

2 depends on whether jn − in > n
2 or

jn − in < n
2 .

The proofs of the two theorems make strategic and perhaps novel use of

the Chinese restaurant construction for a uniformly random permutation.

We note that if one substitutes k = 0 in (1.6) and (1.7), these formulas

reduce to (1.4) and (1.5) respectively. We have presented the two results

separately because derangements are an important class of permutations and

because the formulas are considerably simpler for derangements. Further-

more, although the same general method is used to prove the two theorems,

there are some technical differences in the proofs, and the calculations are

much shorter for Theorem 1. Theorem 1 is proved in section 2 and Theorem

2 is proved in section 3.
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We end this section with a description of the Chinese restaurant construc-

tion that will be used in the proofs. This construction simultaneously yields

a uniformly random permutation Σn in Sn, for all n [4, 3]. Furthermore, the

construction is consistent in the sense that if one writes out the permutation

Σn as the product of its cycles and deletes the number n from the cycle in

which it appears, then the resulting random permutation of Sn−1 is equal

to Σn−1.

The construction works as follows. Consider a restaurant with an unlim-

ited number of circular tables, each of which has an unlimited number of

seats. Person number 1 sits at a table. Now for n ≥ 1, suppose that persons

number 1 through n have already been seated. Then person number n + 1

chooses a seat as follows. For each j ∈ [n], with probability 1
n+1 , person

number n+ 1 chooses to sit to the left of person number j. Also, with prob-

ability 1
n+1 , person number n+1 chooses to sit at an unoccupied table. Now

for each n ∈ N, the random permutation Σn ∈ Sn is defined by Σn(i) = j, if

after the first n persons have taken seats, person number j is seated to the

left of person number i.

2. Proof of Theorem 1

For the duration of the proof, n, i, j are fixed, with 1 ≤ i < j ≤ n. We

begin by calculating P
(0)
n (σ−1i < σ−1j ). This will prove part (ii) and will

also be fundamental for the proof of part (i). We implement the Chinese

restaurant construction, described at the end of section 1, to build a uni-

formly random permutation in Sn. However, we make one change. From the

construction, it is clear that the n persons can enter in any order we like, as

we still obtain a uniformly random permutation in Sn. We let the number

j be the last of the n numbers to be used. That is, in the language of the

construction, person j chooses a seat last, after all the other n− 1 persons

with numbers in [n] − {j} have already chosen their seats. We denote by

Σn = Σn(1), · · · ,Σn(n) the uniformly random permutation in Sn obtained

via this construction. Note that after n − 1 stages of the construction, a

uniformly random permutation of [n]− {j} has been built. We denote this

permutation by Σn−1 = Σn−1(1), · · · ,Σn−1(j−1),Σn−1(j+1), · · · ,Σn−1(n).

A fixed point for Σn−1 is a number l ∈ [n]− {j} for which Σn−1(l) = l. We

note for later use that the distribution of the number of fixed points in Σn−1

is the same as it is for a uniformly random permutation of [n− 1]. We use

the generic P to denote probabilities with respect to the above construction.



INVERSIONS IN PERMUTATIONS WITH PRESCRIBED FIXED POINTS 7

We now define several events relative to the above construction. We note

that we are are reserving the notation Dl for the subset of derangements

in Sl, l ∈ N. Consequently, we denote by Dn−1 the event that Σn−1 has no

fixed points and by Dn the event that Σn has no fixed points. Denote by

Dn−1,1 the event that Σn−1 has one fixed point. Then from the construction,

it follows that

(2.1) Dn = (Dn−1 ∩ Dn) ∪ (Dn−1,1 ∩ Dn) .

Let

(2.2) Cn,i,j = {Σ−1n (i) < Σ−1n (j)}.

Note that Σ−1n (i) denotes the position of i in Σn. By (2.1),

(2.3) Dn ∩ Cn,i,j = (Dn−1 ∩ Dn ∩ Cn,i,j) ∪ (Dn−1,1 ∩ Dn ∩ Cn,i,j) .

Thus,

(2.4)

P (0)
n (σ−1i < σ−1j ) =

P (Dn−1 ∩ Dn ∩ Cn,i,j)
P (Dn)

+
P (Dn−1,1 ∩ Dn ∩ Cn,i,j)

P (Dn)
.

We now calculate the first term on the right hand side of (2.4). From

the construction, it follows that conditioned on Dn−1, the random variable

Σ−1n−1(i) is uniformly distributed on [n]− {i, j}, and conditioned on Dn, the

random variable Σ−1n (j) is uniformly distributed on [n]−{j}. Furthermore,

conditioned on Dn−1 ∩ Dn, the random variables Σ−1n−1(i) and Σ−1n (j) are

independent; thus the random vector
(
Σ−1n−1(i),Σ

−1
n (j)

)
is uniformly dis-

tributed on ([n]− {i, j}) × ([n]− {j}). Note from the construction that if(
Σ−1n−1(i),Σ

−1
n (j)

)
= (l1, l2) with l1 6= l2, then Σ−1n (i) = l1, but if l1 = l2,

then Σ−1n (i) = j. Thus, we conclude that

(2.5)

P
((

Σ−1n (i),Σ−1n (j)
)

= (l1, l2)|Dn−1 ∩ Dn
)

= 1
(n−2)(n−1) ; l1 6= l2, (l1, l2) ∈ ([n]− {i, j})× ([n]− {j}) ;

1
(n−2)(n−1) , l1 = j, l2 ∈ [n]− {i, j}.

.

For each m ∈ N, let dm denote the number of derangements in Sm. From

(1.1), we have

(2.6) dm = m!

(
m∑
l=0

(−1)l

l!

)
.

We write

(2.7) P (Dm) =
dm
m!

.



8 ROSS G. PINSKY

From the construction, we have P (Dn|Dn−1) = n−1
n . Using this with (2.7)

gives

(2.8) P (Dn−1 ∩ Dn) = (n− 1)
dn−1
n!

.

From (2.2), (2.5), and (2.8), we conclude that

(2.9)
P (Dn−1 ∩ Dn ∩ Cn,i,j) =

(n− 1)dn−1
n!

1

(n− 2)(n− 1)

n− j +
∑

l1∈[j−1]−{i}

(n− 1− l1) +
n∑

l1=j+1

(n− l1)

 .

We now calculate the second term on the right hand side of (2.4). Let

dn−1,1 denote the number of permutations in Sn−1 with one fixed point. It

follows easily that dn−1,1 = (n− 1)dn−2, where dn−2 is as in (2.6). So

(2.10) P (Dn−1,1) =
dn−1,1

(n− 1)!
=

(n− 1)dn−2
(n− 1)!

=
dn−2

(n− 2)!
.

Conditioned on Dn−1,1, the event Dn occurs if and only if the number j,

which enters at stage n, joins the lone singleton existing at stage n− 1; the

probability of this is of course 1
n . Thus,

(2.11) P (Dn|Dn−1,1) =
1

n
.

From (2.10) and (2.11), we conclude that

(2.12) P (Dn−1,1 ∩ Dn) =
dn−2

n(n− 2)!
.

Now consider P (Cn,i,j |Dn−1,1∩Dn). As we’ve already noted, for the event

Dn−1,1 ∩ Dn to occur, the number j must join the lone singleton existing

at stage n − 1. This singleton has equal probability of being any number

in [n] − {j}. In particular, with probability 1
n−1 , the number j will join

the number i. In this case Σ−1n (i) = j and Σ−1n (j) = i, and thus the event

{Σ−1n (i) < Σ−1n (j)} does not occur. Conditioned on the singleton not being

i, it follows by symmetry that (Σ−1n (i),Σ−1n (j)) is distributed uniformly on(
[n]−{i, j}

)
×
(
[n]−{i, j}

)
. Thus, in this case, the event {Σ−1n (i) < Σ−1n (j)}

occurs with probability 1
2 . From this, we conclude that

(2.13) P (Cn,i,j |Dn−1,1 ∩ Dn) =
1

2

n− 2

n− 1
.

From (2.12) and (2.13), we obtain

(2.14) P (Dn−1,1 ∩ Dn ∩ Cn,i,j) =
1

2

n− 2

n− 1

dn−2
n(n− 2)!

=
1

2

(n− 2)dn−2
n!

.
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From (2.4), (2.7), (2.9) and (2.14), we obtain

(2.15)
dn
n!
P (0)
n (σ−1i < σ−1j ) =

1

2

(n− 2)dn−2
n!

+

(n− 1)dn−1
n!

1

(n− 2)(n− 1)

n− j +
∑

l1∈[j−1]−{i}

(n− 1− l1) +
n∑

l1=j+1

(n− l1)

 .

Using the fact that
∑

l1∈[j−1]−{i} l1 = (j−1)j
2 − i and that

∑n
l1=j+1 l1 =

n(n+1)
2 − j(j+1)

2 , we can rewrite (2.15) as

(2.16)
dn
n!
P (0)
n (σ−1i < σ−1j ) =

1

2

(n− 2)dn−2
n!

+

dn−1
(n− 2)n!

(
(n− 1)(j − 2) + (n+ 1)(n− j)− (j − 1)j

2
+ i− n(n+ 1)

2
+
j(j + 1)

2

)
.

One has

(n−1)(j−2)+(n+1)(n−j)−(j − 1)j

2
+i−n(n+ 1)

2
+
j(j + 1)

2
=

1

2
n2−3

2
n+i−j+2.

Thus, from (2.16) we have

(2.17)
dn
n!
P (0)
n (σ−1i < σ−1j ) =

1

2

(n− 2)dn−2
n!

+
dn−1

(n− 2)n!

(
1

2
n2 − 3

2
n+ i− j + 2

)
=

=
dn−2

(n− 2)!

(
1

2

n− 2

n(n− 1)

)
+

dn−1
(n− 1)!

1

n(n− 2)

(
1

2
n2 − 3

2
n+ i− j + 2

)
.

From (2.6), we have

(2.18)

dn−1

(n−1)!
dn
n!

= 1−
(−1)n
n!∑n

l=0
(−1)l
l!

,

dn−2

(n−2)!
dn
n!

= 1−
(−1)n−1

(n−1)! + (−1)n
n!∑n

l=0
(−1)l
l!

.

Also, we have

1

n(n− 2)

(
n2

2
− 3

2
n

)
=

1

2
− 1

2(n− 2)
.

Using this with (2.18), we can rewrite (2.17) as

(2.19)

P (0)
n (σ−1i < σ−1j ) =

(
1−

(−1)n
n!∑n

l=0
(−1)l
l!

)(
1

2
− 1

2(n− 2)
+

2− (j − i)
n(n− 2)

)
+1−

(−1)n−1

(n−1)! + (−1)n
n!∑n

l=0
(−1)l
l!

 n− 2

2n(n− 1)
.
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After some algebra, which we leave to the reader, (2.19) can be written as

given in (1.5). This proves part (ii) of the theorem.

We now turn to part (i) of the theorem. We have

(2.20) E0
nIn =

n(n− 1)

2
−

∑
1≤i<j≤n

P (0)
n (σ−1i < σ−1j ).

Using (1.5), we calculate
∑

1≤i<j≤n P
(0)
n (σ−1i < σ−1j ). We note that

(2.21)
∑

1≤i<j≤n
i =

1

6
(n− 1)n(n+ 1);

∑
1≤i<j≤n

j =
1

3
(n− 1)n(n+ 1).

We first sum over 1 ≤ i < j ≤ n the terms on the right hand side of the first

line of (1.5) that don’t involve
(−1)n

n!∑n
l=0

(−1)l

l!

. Using (2.21), we have

(2.22)∑
1≤i<j≤n

1

2
+

(
1− 2(j − i)

)
n+ 2(j − i)

)
2n(n− 1)(n− 2)

 =

1

4
n(n− 1)− n

2n(n− 1)(n− 2)

1

2
n(n− 1)− 2(n− 1)

2n(n− 1)(n− 2)

1

6
(n− 1)n(n+ 1) =

1

4
n(n− 1)− n

6
− 1

12
.

Now we sum over 1 ≤ i < j ≤ n the term multiplying
(−1)n

n!∑n
l=0

(−1)l

l!

on the right

hand side of the first line of (1.5). Using (2.21), we have

(2.23)∑
1≤i<j≤n

2(j − i)− n
2n(n− 2)

=
1

n(n− 2)

1

6
(n−1)n(n+1)− 1

2(n− 2)

1

2
n(n−1) =

1− n
12

.

From (1.5), (2.22) and (2.23), we conclude that

(2.24)∑
1≤i<j≤n

P (0)
n (σ−1i < σ−1j ) =

1

4
n(n− 1)− n

6
− 1

12
+

(−1)n
n!∑n

l=0
(−1)l
l!

(
1− n

12

)
.

Now (1.4) follows from (2.20) and (2.24). This completes the proof of part

(i) �

3. Proof of Theorem 2

For the duration of the proof, n, i, j and k are fixed, with 1 ≤ i < j ≤ n

and 1 ≤ k ≤ n. We implement the Chinese restaurant construction in

the same way that it was implemented in the proof of Theorem 1; that

is, the number j enters at the final stage. Recall from the first paragraph
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of the proof of Theorem 1 that the uniformly random permutation in Sn

obtained via the construction is denoted by Σn = Σn(1), · · · ,Σn(n), and

the uniformly random permutation of [n]−{j} obtained after the first n−1

stages of the construction is denoted by Σn−1 = Σn−1(1), · · · ,Σn−1(j −
1),Σn−1(j + 1), · · · ,Σn−1(n).

We now define several events relative to the above construction. We note

that we are are reserving the notation Dn,l for the subset of permutations in

Sn with l fixed points, l ∈ [n]. Consequently, we denote by Dn,k the event

that Σn has k fixed points, and we denote by Dn−1,l the event that Σn−1

has l fixed points, l ∈ {0, 1, · · · , n − 1}. From the construction, it follows

that

(3.1) Dn,k = (Dn−1,k−1 ∩ Dn,k) ∪ (Dn−1,k ∩ Dn,k) ∪ (Dn−1,k+1 ∩ Dn,k) .

(If k = n, we understand Dn−1,k to be the empty set and if k ∈ {n− 1, n},
we understand Dn−1,k+1 to be the empty set.)

Let

Cn,i,j = {Σ−1n (i) < Σ−1n (j)},

as was defined in (2.2). By (3.1), we have

(3.2)
Dn,k ∩ Cn,i,j =

(Dn−1,k−1 ∩ Dn,k ∩ Cn,i,j) ∪ (Dn−1,k ∩ Dn,k ∩ Cn,i,j) ∪ (Dn−1,k+1 ∩ Dn,k ∩ Cn,i,j) .

We will calculate the probability of each of the three events in the union on

the right hand side of (3.2).

We begin with the calculation of P (Dn−1,k−1 ∩ Dn,k ∩ Cn,i,j). The event

that i is a fixed point at stage n− 1 is the event {Σ−1n−1(i) = i}. We write

(3.3)
Dn−1,k−1 ∩ Dn,k =(
Dn−1,k−1 ∩ Dn,k ∩ {Σ−1n−1(i) = i}

)
∪
(
Dn−1,k−1 ∩ Dn,k ∩ {Σ−1n−1(i) 6= i}

)
.

Let dm,l denote the number of permutations in Sm with l fixed points. Then

P (Dn−1,k−1) =
dn−1,k−1

(n−1)! . Given Dn−1,k−1, the probability that Σ−1n−1(i) = i

is k−1
n−1 . Given Dn−1,k−1, the event Dn,k will occur if and only if j enters at

stage n as a fixed point; that is, if and only if Σ−1n (j) = j. The probability of

this is 1
n . On the event, Dn−1,k−1∩Dn,k ∩{Σ−1n−1(i) = i}, one has Σ−1n (i) = i

and Σ−1n (j) = j, and thus the event Cn,i,j occurs automatically. From the

above facts we obtain

(3.4) P
(
Dn−1,k−1 ∩ Dn,k ∩ {Σ−1n−1(i) = i} ∩ Cn,i,j

)
=
dn−1,k−1
(n− 1)!

k − 1

n− 1

1

n
.



12 ROSS G. PINSKY

Given Dn−1,k−1, the probability that Σ−1n−1(i) 6= i is n−k
n−1 . Given the event

Dn−1,k−1∩Dn,k∩{Σ−1n−1(i) 6= i}, Σ−1n (i) is equally distributed over [n]−{i, j}.
Thus, given this event, the event Cn,i,j occurs with probability j−2

n−2 . From

these facts we obtain

(3.5)

P
(
Dn−1,k−1 ∩ Dn,k ∩ {Σ−1n−1(i) 6= i} ∩ Cn,i,j

)
=
dn−1,k−1
(n− 1)!

n− k
n− 1

1

n

j − 2

n− 2
.

From (3.3)–(3.5), we conclude that

(3.6)

P (Dn−1,k−1 ∩ Dn,k ∩ Cn,i,j) =
dn−1,k−1
(n− 1)!

(
k − 1

n(n− 1)
+

(n− k)(j − 2)

n(n− 1)(n− 2)

)
.

We now turn to the calculation of P (Dn−1,k ∩ Dn,k ∩ Cn,i,j). Similar to

what we did in (3.3), we write

(3.7)
Dn−1,k ∩ Dn,k =(
Dn−1,k ∩ Dn,k ∩ {Σ−1n−1(i) = i}

)
∪
(
Dn−1,k ∩ Dn,k ∩ {Σ−1n−1(i) 6= i}

)
.

We have P (Dn−1,k) =
dn−1,k

(n−1)! . Given Dn−1,k, the probability that Σ−1n−1(i) = i

is k
n−1 . Given Dn−1,k, the event Dn,k will occur if and only if person j

entering at stage n sits at a table that already has at least two people. (If

person j starts a new table, then Σn will have k+1 fixed points, and if person

j sits at a table that has one person, then Σn will have k−1 fixed points.) The

probability of this is n−k−1
n . Given the event Dn−1,k ∩Dn,k ∩{Σ−1n−1(i) = i},

Σ−1n (j) is uniformly distributed over [n] − {i, j}; thus given this event, the

probability that Cn,i,j occurs is n−i−1
n−2 . From these facts, we obtain

(3.8)

P
(
Dn−1,k ∩ Dn,k ∩ {Σ−1n−1(i) = i} ∩ Cn,i,j

)
=

dn−1,k
(n− 1)!

k

n− 1

n− k − 1

n

n− i− 1

n− 2
.

We now calculate P
(
Dn−1,k ∩ Dn,k ∩ {Σ−1n−1(i) 6= i} ∩ Cn,i,j

)
. GivenDn−1,k,

the probability that Σ−1n−1(i) 6= i is n−k−1
n−1 . As noted above, given Dn−1,k,

the event Dn,k will occur if and only if person j entering at stage n sits

at a table that already has at least two people, and the probability of

this is n−k−1
n . We now need to calculate the probability of Cn,i,j , given

Dn−1,k ∩Dn,k ∩ {Σ−1n−1(i) 6= i}. We need to be somewhat careful here. Con-

ditioned on the above event, Σ−1n−1(i) is uniformly distributed over [n]−{i, j}.
Conditioned on the above event, Σ−1n (j) is uniformly distributed over the

n−k−1 numbers that are not fixed points for Σn−1. These n−k−1 numbers

include i. The other n− k− 2 such numbers are uniformly distributed over



INVERSIONS IN PERMUTATIONS WITH PRESCRIBED FIXED POINTS 13

all the (n− k − 2)-tuples in [n]− {i, j}. From this, it follows that

(3.9)

P (Σ−1n−1(i) = l1,Σ
−1
n (j) = i) =

1

n− 2

1

n− k − 1
; l1 ∈ [n]− {i, j};

P (Σ−1n−1(i) = l1,Σ
−1
n (j) = l1) =

1

n− 2

1

n− k − 1
, l1 ∈ [n]− {i, j};

P (Σ−1n−1(i) = l1,Σ
−1
n (j) = l2) =

1

n− 2

n− k − 3

n− k − 1

1

n− 3
, l1 6= l2, l1, l2 ∈ [n]− {i, j}.

If {Σ−1n−1(i) = l1,Σ
−1
n (j) = i} occurs with l1 ∈ [n]−{i, j}, then also Σ−1n (i) =

l1, and if {Σ−1n−1(i) = l1,Σ
−1
n (j) = l2)} occurs with l1 6= l2, l1, l2 ∈ [n]−{i, j},

then also Σ−1n (i) = l1. However, if {Σ−1n−1(i) = l1,Σ
−1
n (j) = l1} occurs with

l1 ∈ [n]− {i, j}, then from the construction we have Σ−1n (i) = j. Using this

with (3.9), it follows that conditioned on Dn−1,k ∩Dn,k ∩{Σ−1n−1(i) 6= i}, the

probability of Cn,i,j is i−1
n−2

1
n−k−1 + n−j

n−2
1

n−k−1 + 1
2
n−k−3
n−k−1 , which we write as

1
(n−2)(n−k−1)

(
i− 1 + n− j + 1

2(n− 2)(n− k − 3)
)
. Thus, we conclude that

(3.10)
P
(
Dn−1,k ∩ Dn,k ∩ {Σ−1n−1(i) 6= i} ∩ Cn,i,j

)
=

dn−1,k
(n− 1)!

n− k − 1

n− 1

n− k − 1

n

1

(n− 2)(n− k − 1)

(
i− 1 + n− j +

1

2
(n− 2)(n− k − 3)

)
.

From (3.7), (3.8) and (3.10) we obtain

(3.11)

P (Dn−1,k ∩ Dn,k ∩ Cn,i,j) =
dn−1,k

(n− 1)!
×(k(n− k − 1)(n− i− 1)

n(n− 1)(n− 2)
+

(n− k − 1)

n(n− 1)(n− 2)

(
i− 1 + n− j +

1

2
(n− 2)(n− 3− k)

))
.

We now turn to the calculation of P (Dn−1,k+1 ∩ Dn,k ∩ Cn,i,j). Similar

to before, we write

(3.12)
Dn−1,k+1 ∩ Dn,k =(
Dn−1,k+1 ∩ Dn,k ∩ {Σ−1n−1(i) = i}

)
∪
(
Dn−1,k+1 ∩ Dn,k ∩ {Σ−1n−1(i) 6= i}

)
.

We have P (Dn−1,k+1) =
dn−1,k+1

(n−1)! . Given Dn−1,k+1, the probability that

Σ−1n−1(i) = i is k+1
n−1 . Given Dn−1,k+1, the event Dn,k will occur if and only

if person j entering at stage n sits at a table that has exactly one person

already. (This reduces the number of fixed points from k + 1 at stage n− 1

to k at stage n.) The probability of this is k+1
n . We now need to calculate

the probability of Cn,i,j , given Dn−1,k+1 ∩ Dn,k ∩ {Σ−1n−1(i) = i}. Given

this event, person j has probability 1
k+1 of joining i in which case the event
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Cn,i,j does not occur. With probability k
k+1 , person j will join a table with a

person other than i, and this person is uniformly distributed over [n]−{i, j}.
Thus given the above event, the probability of Cn,i,j is k

k+1
n−1−i
n−2 . Thus, we

conclude that

(3.13)

P
(
Dn−1,k+1 ∩ Dn,k ∩ {Σ−1n−1(i) = i} ∩ Cn,i,j

)
=

dn−1,k+1

(n− 1)!

k + 1

n− 1

k + 1

n

k

k + 1

n− i− 1

n− 2
.

We now calculate P
(
Dn−1,k+1 ∩ Dn,k ∩ {Σ−1n−1(i) 6= i} ∩ Cn,i,j

)
. Given

Dn−1,k+1, the probability that Σ−1n−1(i) 6= i is n−2−k
n−1 . As noted above, given

Dn−1,k+1, the event Dn,k will occur if and only if person j entering at stage

n sits at a table that has exactly one person already, and the probability

of this is k+1
n . We now need to calculate the probability of Cn,i,j , given

Dn−1,k+1 ∩ Dn,k ∩ {Σ−1n−1(i) 6= i}. Given this event, Σ−1n (i) and Σ−1n (j) are

independent and uniformly distributed over [n]−{i, j}; thus the probability

of Cn,i,j is 1
2 . Thus, we conclude that

(3.14)

P
(
Dn−1,k+1 ∩ Dn,k ∩ {Σ−1n−1(i) 6= i} ∩ Cn,i,j

)
=

dn−1,k+1

(n− 1)!

n− 2− k
n− 1

k + 1

n

1

2
.

From (3.12)–(3.14), we obtain

(3.15)

P (Dn−1,k+1 ∩ Dn,k ∩ Cn,i,j) =
dn−1,k+1

(n− 1)!

(
(k + 1)k(n− i− 1)

n(n− 1)(n− 2)
+

(n− 2− k)(k + 1)

2n(n− 1)

)
.

From (3.2), (3.6), (3.11) and (3.15), it follows that Pn(Dn,k ∩ {σ−1n (i) <

σ−1n (j)}) = P (Dn,k ∩ Cn,i,j) is equal to the sum of the terms on the right

hand sides of (3.6), (3.11) and (3.15). Of course, P
(k)
n (σ−1n (i) < σ−1n (j)) =

1
Pn(Dn,k)

Pn(Dn,k ∩ {σ−1n (i) < σ−1n (j)}). Also

(3.16) E(k)
n In =

n(n− 1)

2
−

∑
1≤i<j≤n

P (k)
n (σ−1i < σ−1j ).

Thus to calculate E
(k)
n In, we will calculate∑

1≤i<j≤k
Pn(Dn,k ∩ {σ−1n (i) < σ−1n (j)}),

which is the sum of (3.6), (3.11) and (3.15) over the pairs i, j satisfying

1 ≤ i < j ≤ n.
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Using (2.21), we have for the sum of (3.6) over the pairs i, j satisfying

1 ≤ i < j ≤ n,

(3.17)∑
1≤i<j≤n

P (Dn−1,k−1 ∩ Dn,k ∩ Cn,i,j) =

∑
1≤i<j≤n

dn−1,k−1
(n− 1)!

(
k − 1

n(n− 1)
+

(n− k)(j − 2)

n(n− 1)(n− 2)

)
=
dn−1,k−1
(n− 1)!

×

(
k − 1

n(n− 1)

n(n− 1)

2
− 2(n− k)

n(n− 1)(n− 2)

n(n− 1)

2
+

n− k
n(n− 1)(n− 2)

(n− 1)n(n+ 1)

3

)
=

dn−1,k−1
(n− 1)!

(
k − 1

2
+
n− k

3

)
.

We now consider the sum of (3.11) over the pairs i, j satisfying 1 ≤ i <

j ≤ n. Using (2.21), the sum of the first term on the second line of (3.11) is

(3.18)

∑
1≤i<j≤n

k(n− k − 1)(n− i− 1)

n(n− 1)(n− 2)
=

k(n− k − 1)(n− 1)

n(n− 1)(n− 2)

n(n− 1)

2
− k(n− k − 1)

n(n− 1)(n− 2)

(n− 1)n(n+ 1)

6
=

k
n− k − 1

n− 2

(
n− 1

2
− n+ 1

6

)
.

Using (2.21), the sum of the second term on the second line of (3.11) is

(3.19)∑
1≤i<j≤n

(n− k − 1)

n(n− 1)(n− 2)

(
i− 1 + n− j +

1

2
(n− 2)(n− 3− k)

)
=

n− k − 1

n(n− 1)(n− 2)

(
n− 1 +

1

2
(n− 2)(n− 3− k)

)
n(n− 1)

2
−

n− k − 1

n(n− 1)(n− 2)

(n− 1)n(n+ 1)

6
=
n− k − 1

n− 2

(
n− 1

2
+

(n− 2)(n− 3− k)

4
− n+ 1

6

)
.

Thus, from (3.11), (3.18) and (3.19), we obtain

(3.20)

∑
1≤i<j≤n

P (Dn−1,k ∩ Dn,k ∩ Cn,i,j) =
dn−1,k

(n− 1)!

n− k − 1

n− 2
×

(
k(n− 1)

2
− k(n+ 1)

6
+
n− 1

2
+

(n− 2)(n− 3− k)

4
− n+ 1

6

)
=

dn−1,k
(n− 1)!

n− k − 1

12(n− 2)

(
3n2 − 11n+ (n− 2)k + 10

)
.
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Now we consider the sum of (3.15) over the pairs i, j satisfying 1 ≤ i <

j ≤ n. Using (2.21), we have

(3.21)∑
1≤i<j≤n

P (Dn−1,k+1 ∩ Dn,k ∩ Cn,i,j) =

∑
1≤i<j≤n

dn−1,k+1

(n− 1)!

(
(k + 1)k(n− i− 1)

n(n− 1)(n− 2)
+

(n− 2− k)(k + 1)

2n(n− 1)

)
=

dn−1,k+1

(n− 1)!

((
(k + 1)k(n− 1)

n(n− 1)(n− 2)
+

(n− 2− k)(k + 1)

2n(n− 1)

)
n(n− 1)

2
−

(k + 1)k

n(n− 1)(n− 2)

(n− 1)n(n+ 1)

6

)
=
dn−1,k+1

(n− 1)!

(
k + 1

4
n+

1

12
(k + 1)(k − 6)

)
.

We conclude that
∑

1≤i<j≤n Pn(Dn∩{σ−1n (i) < σ−1n (j)}), is the sum of the

right hand sides of (3.17), (3.20) and (3.21). Consequently,
∑

1≤i<j≤n P
(k)
n (σ−1n (i) <

σ−1n (j)) is the above noted sum divided by Pn(Dn,k). It is easy to see that

dm,r =
(
m
r

)
dm−r, for 0 ≤ r ≤ m. Thus,

(3.22)
dm,r
m!

=
1

r!

dm−r
(m− r)!

=
1

r!

m−r∑
l=0

(−1)l

l!
,

where the last equality follows from (2.6). For convenience in notation, let

(3.23) Em(−1) =
m∑
l=0

(−1)l

l!
.

Thus, from (3.22),

Pn(Dn,k) =
dn,k
n!

=
1

k!

n−k∑
l=0

(−1)l

l!
=

1

k!
En−k(−1).

Using this with (3.22), we have

(3.24)

dn−1,k−1

(n−1)!

Pn(Dn,k)
= k;

dn−1,k

(n−1)!

Pn(Dn,k)
= 1−

(−1)n−k

(n−k)!

En−k(−1)
;

dn−1,k+1

(n−1)!

Pn(Dn,k)
=

1

k + 1

1−
(−1)n−k−1

(n−k−1)! + (−1)n−k

(n−k)!

En−k(−1)

 .
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From the facts noted in the previous paragraph along with (3.24), (3.17),

(3.20) and (3.21), we obtain∑
1≤i<j≤n

P (k)
n (σ−1n (i) < σ−1n (j)) = k

(
k − 1

2
+
n− k

3

)
+

1−
(−1)n−k

(n−k)!

En−k(−1)

(n− k − 1

12(n− 2)

(
3n2 − 11n+ (n− 2)k + 10

))
+

1

k + 1

1−
(−1)n−k−1

(n−k−1)! + (−1)n−k

(n−k)!

En−k(−1)

(k + 1

4
n+

1

12
(k + 1)(k − 6)

)
.

From this and (3.16), we obtain

(3.25)

E(k)
n In =

n(n− 1)

2
− k

(
k − 1

2
+
n− k

3

)
−1−

(−1)n−k

(n−k)!

En−k(−1)

(n− k − 1

12(n− 2)

(
3n2 − 11n+ (n− 2)k + 10

))
−

1−
(−1)n−k−1

(n−k−1)! + (−1)n−k

(n−k)!

En−k(−1)

(n
4

+
1

12
(k − 6)

)
.

Now

(3.26)
n− k − 1

12(n− 2)
(3n2−11n+(n−2)k+10) =

1

4
n2−4 + k

6
n− 1

12
(k+1)(k−5).

Consequently, the summands on the right hand side of (3.25) that do not

involve En(−1) are given by

(3.27)
n(n− 1)

2
− k

(
k − 1

2
+
n− k

3

)
− 1

4
n2 +

4 + k

6
n+

1

12
(k + 1)(k − 5)− n

4
− 1

12
(k − 6) =

n(n− 1)

4
− k − 1

6
n− k2 − k − 1

12
.

Writing (−1)n−k−1

(n−k−1)! = −(n − k) (−1)
n−k

(n−k)! and using (3.26), we can write the

summands on the right hand side of (3.25) that involve En(−1) as

(3.28)
(−1)n−k

(n−k)!

En−k(−1)

(
1

4
n2 − 4 + k

6
n− 1

12
(k + 1)(k − 5) +

(
− (n− k) + 1

)(n
4

+
1

12
(k − 6)

))
=

(−1)n−k

(n−k)!

En−k(−1)

(
n− k − 1

12

)
.



18 ROSS G. PINSKY

Now (1.6) follows from (3.25), (3.27), (3.28) and (3.23).

We now prove (1.7). From the first two sentences in the paragraph fol-

lowing (3.15), along with (3.24), it follows that

(3.29)

P (k)
n (σ−1n (i) < σ−1n (j)) = k

(
k − 1

n(n− 1)
+

(n− k)(j − 2)

n(n− 1)(n− 2)

)
+1−

(−1)n−k

(n−k)!

En−k(−1)

×
(
k(n− k − 1)(n− i− 1)

n(n− 1)(n− 2)
+

(n− k − 1)

n(n− 1)(n− 2)

(
i− 1 + n− j +

1

2
(n− 2)(n− 3− k)

))
+

1

k + 1

1−
(−1)n−k−1

(n−k−1)! + (−1)n−k

(n−k)!

En−k(−1)

×
(

(k + 1)k(n− i− 1)

n(n− 1)(n− 2)
+

(n− 2− k)(k + 1)

2n(n− 1)

)
.

With a lot of algebra, one can show that the summands on the right hand

side of (3.29) that do not involve En(−1) satisfy

(3.30)

k

(
k − 1

n(n− 1)
+

(n− k)(j − 2)

n(n− 1)(n− 2)

)
+

k(n− k − 1)(n− i− 1)

n(n− 1)(n− 2)
+

(n− k − 1)

n(n− 1)(n− 2)

(
i− 1 + n− j +

1

2
(n− 2)(n− 3− k)

)
+

k(n− i− 1)

n(n− 1)(n− 2)
+

(n− 2− k)

2n(n− 1)
=

1

2
+

1

2n(n− 1)(n− 2)

((
2(k − 1)(j − i) + (k2 − 3k + 1)n− 2(k2 − k − 1)(j − i)

)
.

Now (1.7) follows from (3.29), (3.30) and (3.23) �

With considerably more algebra, one can show that the summands on the

right hand side of (3.29) that involve En(−1) can be written as

(3.31)

(−1)n−k

(n−k)!∑n−k
l=0

−1)l
l!

1

2n(n− 1)(n− 2)
×(

kn3 − (5k + 1)n2 + (−k3(3− 2i)k2 + 9k + 2(j − i) + 1)n+

2ik3 + 2(i− 2)k2 − 2(j − i+ 2)k − 2(j − i)
)
.
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From (3.29)–(3.31) and (3.23), it follows that the exact formula for P
(k)
n (σ−1i <

σ−1j ) is

(3.32)

P (k)
n (σ−1i < σ−1j ) =

1

2
+

1

2n(n− 1)(n− 2)

( (
2(k − 1)(j − i) + k2 − 3k + 1

)
n− 2(k2 − k − 1)(j − i)

)
+

(−1)n−k

(n−k)!∑n−k
l=0

−1)l
l!

1

2n(n− 1)(n− 2)
×(

kn3 − (5k + 1)n2 + (−k3(3− 2i)k2 + 9k + 2(j − i) + 1)n+

2ik3 + 2(i− 2)k2 − 2(j − i+ 2)k − 2(j − i)
)
.
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