THE INVERSION STATISTIC IN DERANGEMENTS AND IN
OTHER PERMUTATIONS WITH A PRESCRIBED NUMBER OF
FIXED POINTS

ROSS G. PINSKY

ABSTRACT. We study how the inversion statistic is influenced by fixed points in
a permutation. For each n € N, and each k € {0,1,--- ,n}, let P,gk) denote the
uniform probability measure on the set of permutations in S, with exactly k
fixed points. We obtain an exact formula for the expected number of inversions
under the measure Py(lm as well as for P,(lk)(cri_1 < O'j_l), forl1 <i<j<n,
the P,(Lm—probability that the number ¢ precedes the number j. In particular,
up to a super-exponentially small correction as n — oo, the expected number
of inversions in a random derangement (k = 0) is %n—‘r 1—12 more than the value
% that one obtains for a uniformly random general permutation in S,.
On the other hand, up to a super-exponentially small correction, for k > 2, the
expected number of inversions in a random permutation with k fixed points

k-1

s k2—k—1 n(n—1)
Is g=n+ *—5— less than ——

. In the borderline case, k = 1, up to a

super-exponentially small correction, the expected number of inversions in a

n(n—1)
P

random permutation with one fixed point is -~ more than . We can

12
also let k and the pair 4,5 depend on n. As corollaries of the theorems we
obtain the asymptotic behavior of the expected number of inversions under
P,gk“) when k., — oo, for various regimes of k,, and the asymptotic behavior
of P,Sk")(afnl < O';nl), for various regimes of k, and of j, — i,. The proofs
make strategic and perhaps novel use of the Chinese restaurant construction

for a uniformly random permutation.

1. INTRODUCTION AND STATEMENT OF RESULTS

In this paper, we study how the inversion statistic is influenced by fixed points
in a permutation. Let P, denote the uniform probability measure on the set S, of
permutations of [n] = {1,--- ,n}, and denote the expectation with respect to P,
by E,. We write o0 € S,, in one-line notation as ¢ = o1 ---0,. Recall that ¢ is a

derangement if it has no fixed points; that is, if o; # ¢, for all ¢ € [n]. Let D,, C S,
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denote the set of derangements in S,,. As is well-known [T, [4],

no N
(1.1) Py =3 ”1)

=0

; lim P,(D,)=e "

n—oo

Let I,,(0) denote the number of inversions in o; that is,

L(o)= Y Vocon= D, Loricorny:

1<i<j<n 1<i<j<n

(Note that 0;1 is the position of the number 7 in the permutation ¢.) By symmetry,
one has E, I, = %. Let In<j(0) = > 1<ic 1{0;1<U;1} denote the number of
inversions in ¢ that involve the number j and a number less than j. Of course,
I, = 2?22 Ip.<;. Under the uniform distribution, it is clear that I,.; is distributed
uniformly on {0,1,---,7 — 1}. Furthermore, it is known that under the uniform
distribution the random variables {I,.<;}7_, are independent [3| [5]. Thus, I,, can
be represented as the sum of independent random variables. This leads easily to a
weak law of large numbers and a central limit theorem for the inversions statistic
[3]. One has
2

2
(1.2) lim P, ((1—6)2 <I,< (1—1—6)2) =1, for all € > 0,

n—oo

and n~ 3 (I, — %) T N(0, ).

Denote the uniform probability measure on D,, by Py(LO); that is,

P, (AND,)

(1.3) PO(A) = P ACS,,

and let Ef;) ) denote the expectation with respect to P,(LO). From and 7 it
follows that PT(LO) is asymptotically absolutely continuous with respect to P, in the
sense that if a sequence of events {A,,}52 ,, with A,, C Sy, satisfies lim,, oo P, (Ay) =
0, then also lim,_, P,(LO)(An) = 0. In light of this, it follows that the law of large
numbers also holds for I,, under the measure P,(LO); that is, also holds with P,
replaced by P From this and the fact that max,es, In(0) = O(n?), if follows
that BT, ~ 2.

What can be said about lower order terms in E,go)In? Intuitively, it seems that

EVT, is larger than E,I, = 7"(”4_1). Indeed, by symmetry considerations, for
any i € [n], one has P7(I,O)(O',L‘_1 =1) = 15, | € [n] — {i}. Thus under PO for

1 < ¢ < j < n, the random variable o, L strictly stochastically dominates the
random variable O’;l; that is, P,SO) (0;1 >a) > P,(LO)(U;1 > a), for all a € R, and
with strict inequality for at least one choice of a. On the other hand, under P,,

the random variables o, ! and aj_l have the same distribution; namely they are
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uniformly distributed on [n]. This is only intuition and not a proof because o; !

and aj_l are not independent under P,(LO) or under P,,. We will calculate E,(LO)IR and
P,SO) (o, < U;l) explicitly, allowing one to see how much greater E,(LO)I,L is than
E, I, and how much smaller Pﬁo)(oi_l < aj_l) is than P, (0, ! < 0]-_1).

We now turn to permutations with a prescribed non-zero number of fixed points.
For k € N, let D, denote the set of permutations in S,, with exactly k fixed points;
that is

Dpy={c€sS,:|{i€[n]:0() =1} =k}
For convenience, define D,,.o = D,,. It is well-known [II, 2] that under the uniform
measure P,,

671

(1.4) lim P, (Dp) =

Jim W,k:O,l,'--;

equivalently, under P,, the random variable that counts the number of fixed points
converges in distribution to the Poisson distribution with parameter one. Let P,(lk)
denote the uniform probability measure on D,,; that is,

P,(ANDy.)

, AC Sy,
Pn(Dn;k)

P®(4) =

and let ET(Lk) denote the expectation with respect to PT(,k). From and the
reasoning above in the case k = 0, it follows that also holds with P, replaced
by PT(Lk). Thus, as with the case k£ = 0, we have E,(Lk)fn ~ "72. Which do we expect
to be larger, E,Sk)ln or B,1I, = @? It is instructive to consider the extreme
case in which k£ = n. Note that Pﬁbn) is the §-measure on the identity permutation;
thus, Eﬁ")In = 0. From this fact and the above intuition concerning the case k = 0,
it is natural to suspect that there is a threshold value of k (perhaps depending on
n), so that for k£ below the threshold, Eflk)ln > E, I, and for k above the threshold,
E,(Lk)ln < E,I,. Since under the uniform measure, the expected number of fixed
points is easily seen to be equal to one for all n, the candidate k = 1 is an intuitive
choice for the threshold, at least for sufficiently large n. We will calculate E,(Lk)ln
explicitly. In particular, we will see that the above noted threshold is indeed k =1,
and we will see what happens at the threshold k£ = 1.

The first theorem below concerns derangements and the second one treats per-

mutations with a prescribed non-zero number of fixed points.
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Theorem 1. Letn > 3.

1.

(="
por, =" L 1 (n_1>:

n —1)t
(1.5) 4 6 12 >i=0 ( z!) 12
nn—1) 1 1 1
4 +6"+12+O<(n—1)!>'
1. Let 1 <1< j<mn. Then
(1.6)
L 1 (1=20-))n+20—9) CO 9 —i)—n
P7§,0)0—11<U‘1:7+ + n! _
( i) 2 2n(n —1)(n — 2) S (*“1)[ 2n(n — 2)

1 1-2(5—1 +2(5 —1 1

1A= =dnt2G-9) 0 1

2 2n(n —1)(n —2) (n+1)!

Theorem 2. Letn >3 and let k € {1,2,--- ,n} — {n —1}.
i.

(-1t

E(k)l:n(n—l)_k—ln_kQ—k—1+ = (n—k—l)z

an 0 12 ARSI
2

n(n4 1)_kﬁln_k 1]; 1+O<(n—;—1)!)'
1. Let 1 <i<j<n. Then
(1.8)
PP (ot <oyt) =
1 1

3 ¥ =gy (A~ DG =)+ =3k n =2k — k= 1) =0))+

*(em)

Remark. The precise formula for the term O (ﬁ) in (1.8]) can be found at the
end of the paper in (3.32).

Remark. From part (i) of Theorem |1} one sees that up to a super-exponentially
small correction as n — oo, the expected number of inversions in the case of a
random derangement is %n+ % more than it is for a uniformly random permutation.
On the other hand, from part (i) of Theorem one sees that up to a super-

exponentially small correction, for k£ > 2, the expected number of inversions in

E2—k—1
12

uniformly random permutation. In particular, in both the case of derangements

less than it is for a

a random permutation with & fixed points is %n +

(k =0) and in the case k > 2, this difference grows linearly in n. Now consider the
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borderline case, k = 1. As we noted above, for all n, the expected number of fixed
points in a uniformly random permutation is one. Theorem [2| shows that for all n,
up to a super-exponentially small correction, the expected number of inversions in
a random permutation with one fixed point is 1—12 more than it is for a uniformly
random permutation.

Remark. As we noted above, the random variable that counts the number of
fixed points in a uniformly random permutation of size n converges in distribution
as n — oo to the Poisson distribution with parameter one. Let X be a random

variable with this distribution. Then EX = 1 and EX?2 = 2. If we substitute X

E2—k—1
12

(i) of Theorem |2 and take the expectation, we obtain E(<ztn + %) =0.

for k in the expression %n + appearing in the formula for E,(Lk)In in part

Note that since Theorem [2]is true for all k € {1,--- ,n}, one can let k depend
on n: k = k, with lim,,_, k, = oco. This leads to the following corollary which

follows by direct calculation.

Corollary 1. Assume that k = k,, satisfies lim,, o0 ky = 00.
i. If k, = o(n), then Egk")ln ~

4
it. If kyy ~cn, c€(0,1), then EFIT, ~ 3*2162762 n?;

iti. If ky, =n —1,, wherel, > 2 and l,, = o(n), then Eflk")fn ~ 7l"371n.

In part (ii) of both Theorems [1| and [2| one can let ¢ and j depend on n: ¢ =

in,Jj = jn. This leads to the following corollary which follows by direct calculation.

Corollary 2. Let 1 <, < j, <n.
i. Let k=0 (the case of derangements). Then

1 0 —1 —1 jn*in
0< o —PP(o;! <o3h) =6 ).

n in n2

i. Let k =k, satisfy k, > 2 and limsup,,_,._ %= < 1. Then

n

; : 2
0< PE (ot <o) — % -y (k”(]” n;") " k”) .
iii. Let k =1. Then
POt <o) = 2+ ! (=4 20 —in)) + O(——).
n " 2 2n(n—1)(n—2) (n—1)!

In particular, for sufficiently large n, P,gl)(a;l < U;nl) > % if jn —in > 5, and

Rg, )(Uinl < ojnl) < % if o —in < 5.

The proofs of the two theorems make strategic and perhaps novel use of the

Chinese restaurant construction for a uniformly random permutation. We note that
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if one substitutes k = 0 in ((1.7) and (1.8]), these formulas reduce to (1.5)) and (1.6))

respectively. We have presented the two results separately because derangements
are an important class of permutations and because the formulas are considerably
simpler for derangements. Furthermore, although the same general method is used
to prove the two theorems, there are some technical differences in the proofs, and
the calculations are much shorter for Theorem |1} Theorem |1|is proved in section
and Theorem [2]is proved in section

We end this section with a description of the standard Chinese restaurant con-
struction. (A strategic alteration of the construction will be used in the proofs.)
This construction simultaneously yields a uniformly random permutation %, in S,,,
for all n [6, [4]. Furthermore, the construction is consistent in the sense that if one
writes out the permutation Y, as the product of its cycles and deletes the number
n from the cycle in which it appears, then the resulting random permutation of
Sn_1 is equal to ¥,,_1.

The construction works as follows. Consider a restaurant with an unlimited
number of circular tables, each of which has an unlimited number of seats. Person
number 1 sits at a table. Now for n > 1, suppose that persons number 1 through n
have already been seated. Then person number n + 1 chooses a seat as follows. For
each j € [n], with probability n%rp person number 1+ 1 chooses to sit to the left of

person number j. Also, with probability person number n + 1 chooses to sit

1
n+l>
at an unoccupied table. Now for each n € N, the random permutation ¥,, € S, is
defined by %,,(7) = j, if after the first n persons have taken seats, person number j

is seated to the left of person number 3.

2. PROOF OF THEOREM [I]

For the duration of the proof, n,,j are fixed, with 1 < i < j < n. We begin by
calculating po (o7 < aj_l). This will prove part (ii) and will also be fundamen-
tal for the proof of part (i). We implement the Chinese restaurant construction,
described at the end of section [1} to build a uniformly random permutation in S,.
However, we make one change. From the construction, it is clear that the n persons
can enter in any order we like, as we still obtain a uniformly random permutation
in S,. We let the number j be the last of the n numbers to be used. That is, in
the language of the construction, person j chooses a seat last, after all the other
n —1 persons with numbers in [n] — {j} have already chosen their seats. We denote
by ¥, = 2,(1)---X,(n) the uniformly random permutation in S,, obtained via

this construction. Note that after n — 1 stages of the construction, a uniformly
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random permutation of [n] — {j} has been built. We denote this permutation by
Ypo1=%0-1(1) -2, 1 - 1)1 (G + 1) - Bp—1(n). A fixed point for X, 1 is
a number [ € [n] — {j} for which ¥,,_1(I) = I. We note for later use that the dis-
tribution of the number of fixed points in ¥, _; is the same as it is for a uniformly
random permutation of [n — 1]. We use the generic P to denote probabilities with
respect to the above construction.

We now define several events relative to the above construction. We note that
we are are reserving the notation D, for the subset of derangements in S;,1 € N.
Consequently, we denote by D,,_; the event that ¥,,_; has no fixed points and by
D,, the event that X, has no fixed points. Denote by D,,_1 ; the event that X,,_;

has one fixed point. Then from the construction, it follows that

(2.1) D, = (Dp—1NDy)U(Dp—11NDy).
Let
(2.2) Ch,ij = {5, (1) <5, ()}

Note that ¥ 1(i) denotes the position of i in ¥,,. By (2.1)),
(23) D, N On,i,j = (Dn—l ND,N Cnﬂ',j) U (Dn—l,l ND, N Cn,i,j) .

Thus,

P('Dn,1 NnD, N Cn,i,j) P(Dn,1,1 NnD, N Cn,z‘,j)
P(D,) P(D,) '

(24) POo7' <o;t) =

We now calculate the first term on the right hand side of . From the
construction, it follows that conditioned on D,_;, the random variable ¥ 1 (i)
is uniformly distributed on [n] — {4,j}, and conditioned on D,,, the random vari-
able ¥,1(j) is uniformly distributed on [n] — {j}. Furthermore, conditioned on
D,,_1ND,,, the random variables ¥ | (i) and ¥, (5) are independent; thus the ran-
dom vector (2,1, (i), £1(j)) is uniformly distributed on ([n] — {4, j}) x ([n] — {5}).
Note from the construction that if (E;&l(i),E_l(j)) = (I3,12) with I3 # lo, then

n

¥ 1(i) = 11, but if [; = Iz, then X 1(i) = j. Thus, we conclude that
P ((27:1(2)’2;1(.7)) = (llal2)|Dn—l mDn) -

(2.5) Wl(n,l); L # 1o, (l,l2) € ([n] = {i,j}) x ([n] = {4});

Wl(n,Ua l :j7l2 € [’I’L] - {Z7.7}
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For each m € N, let d,,, denote the number of derangements in S,,. From (|1.1)),

we have

moo 4yl
(2.6) dp = m! (Z( “1)>.

=0

We write
(2.7) P(D,) =—.

From the construction, we have P(D,|D,_1) = 2. Using this with ([2.7) gives

dp_
(2.8) P(Dn-1NDy) = (n— 1)~ L
From (2.2)), (2.5, and (2.8, we conclude that
(2.9)

P(Dn,1 NnD, N Cnﬂ‘)j) =

(n—gdn_l(nz)l(nl) n—j+ > (m—1-L)+ > (n—1)

heli-1-{i} li=j+1

We now calculate the second term on the right hand side of (2.4). Let d,,—11
denote the number of permutations in S,,_; with one fixed point. It follows easily
that d,—11 = (n — 1)d,,—2, where d,,_2 is as in (2.6). So

(2.10) P(Dp-1,1) = (i"_lil); = (n(; 1)?;!_2 - (:n_;)!'

Conditioned on D,,_; 1, the event D,, occurs if and only if the number j, which
enters at stage n, joins the lone singleton existing at stage n — 1; the probability of

this is of course % Thus,

1
(2.11) P(Du|Dp-11) =
From (2.10) and (2.11)), we conclude that

dn—2
2.12 P(Dy_11ND,) = —n=2
(212) ( L1 ) n(n —2)!

Now consider P(C,; j|Pn-1,1 N Dy). As we've already noted, for the event
Dy—1,1 N D, to occur, the number j must join the lone singleton existing at stage
n — 1. This singleton has equal probability of being any number in [n] — {5}. In
particular, with probability ﬁ7 the number j will join the number ¢. In this
case X 1(i) = j and X, 1(j) = 4, and thus the event {¥,1(i) < ¥,1(j)} does
not occur. Conditioned on the singleton not being i, it follows by symmetry that
(5,1(4), 2, 1(4)) is distributed uniformly on ([n] — {i,5}) x ([n] — {i,4}). Thus, in
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this case, the event {£;1(i) < £,1(j)} occurs with probability 1. From this, we
conclude that

1n-2
(2.13) P(Crij[Da10 N Dy) = 5 =

n—1"

From (2.12) and (2.13)), we obtain

1n—-2 dn_g 1 (n—2)dn_2
2.14 P(Dyy 110Dy NCis) = = - = .
(2.14) ( b i) 2n—1nn-2) 2 n!

From , , and , we obtain

(2.15)
d,, 0/ —1 1 1 (n — 2)dn_2
P o < ofl) = o
(n — 1)dn71 1 . -
n—j+ Y. (m-1-l)+ Y (n—1l)
| _ _
nt (n=2)(n—1) Leli-1—{1) hi=j+1

Uging the fact that 37, ;311 = (j_gl)j — ¢ and that ZZ:]-H lh = Ln;l) -
w, we can rewrite (2.15)) as

(2.16)

%Prgo)(ofl <o) = %(” _Z?dn72+

(ndj_;)m ((n DG-=2)+n+1)(n—7) (j —21)] _ n(n;— 1) ](j;_ 1))
One has

(n—1)(j—2)+(n+1)(n—j)— (4 ;1)j H‘fn(n; 1)+j(j2+ - - %n2*§n+z¥j+2.

Thus, from (2.16)) we have
(2.17)

d _ _ 1(n—2)d —2 d —1 1 3 . .
n p(0)(,—1 1y _ 1 n n 12 2 _ _
n! " (07" <o57) 2 n! + (n —2)n! 2" 2n—|—2 Jt2

o dn_g 1 n—2 4 dn—l 1 lzig L4
T m-21\2ntn-1)  a-Dinm-2)\2" 2" "7/ '

From (2.6, we have

(dn—l) (=)™ (dn—z) ((‘Dn;l ="

n—1)! 1 n—2)! n—1)! n!

(218) d =1- nn_lza d =1- n —1)!
ﬁf Zl:O (T) ﬁ Zl:O ( l!)

Also, we have
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Using this with (2.18)), we can rewrite (2.17) as

(=" -
_ _ 1 1 2—-(—1i)
O t<co)y=1—-—2 (==
s (1 zr_o“”)(z 2n-2) ' n(n—2>>+

I

(2.19) (_1)71,71 (_1)77,

(n—1)! n! n—2

Sl g ) =l

1—

After some algebra, which we leave to the reader, (2.19)) can be written as given in
(1.6)). This proves part (ii) of the theorem.
We now turn to part (i) of the theorem. We have
0 n(n—1) 0)(.—1 -1
(2.20) Eplny = ——— = > POt <o h).

1<i<j<n

Using ([1.6), we calculate >, ., p (o7 < O'j_l). We note that

(2.21) > i:é(n—l)n(n—l—l); > j:%(n—l)n(n+1).

1<i<j<n 1<i<j<n

We first sum over 1 < i < j < n the terms on the right hand side of the first line

n

)
of (1.6) that don’t involve W Using (2.21)), we have
1=0 1Al
(2.22)

| (=20 —)n+2( 1))
Z 2" 2n(n—1)(n—2) -

1<i<j<n

1 n 1 2(n—1) 1 B
PR ey pr 3 Y & LG Ry or T sy N L A
1 n 1

=D -g- 1

—1)"

Now we sum over 1 <4 < j <n the term multiplying ———r on the right hand

(
side of the first line of (1.6)). Using (2.21)), we have

=0 1!

(2.23)
2(j —i) —n 11 11 .

> = Y- tnm+1) - Ly =127
1<i<j<n 2n(n —2) n(n—2)6 2(n—2)2 12
From (1.6, (2.22) and (2.23), we conclude that

plO) (g1 —1y 1 n 1 (_nll)" 1-n
(2:24) Z w(or <o )_Zn(n_l)_g_ﬁ+2n o'\ 12 /-
1<i<j<n =0 T

Now (L.5)) follows from (2.20) and (2.24). This completes the proof of part (i) O
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3. PROOF OF THEOREM

For the duration of the proof, n,i,7 and k are fixed, with 1 < i < j < n
and 1 < k < n. We implement the Chinese restaurant construction in the same
way that it was implemented in the proof of Theorem [I} that is, the number j
enters at the final stage. Recall from the first paragraph of the proof of Theorem
that the uniformly random permutation in S,, obtained via the construction
is denoted by %, = X,(1)---3,(n), and the uniformly random permutation of
[n] — {j} obtained after the first n — 1 stages of the construction is denoted by
Tno1=E1(1) Epa(G = DEpa(G+1) - Bpoa(n).

We now define several events relative to the above construction. We note that
we are are reserving the notation D, ; for the subset of permutations in \5,, with
! fixed points, [ € [n]. Consequently, we denote by D,,  the event that ¥, has
k fixed points, and we denote by D,_1; the event that ¥, _; has [ fixed points,
1€{0,1,--- ,n—1}. From the construction, it follows that

(31) Dn,k = (anl,kfl N Dn,k) U (anl,k N Dn,k) U (anl,k:Jrl N Dn,k:) .

(If & = n, we understand D,,_1  to be the empty set and if £ € {n — 1,n}, we
understand D,,_1 41 to be the empty set.)
Let

Cr,ij = {5, (1) <, ()}

as was defined in (2.2). By (3.1), we have
(3.2)
Dn,k N Cn,i,j =

(Pn-1,k-1NDp e NChiij) U(Ppo1k N Dy N Chiij) U (Pr—tkt1 N Do N Chiij) .

We will calculate the probability of each of the three events in the union on the
right hand side of .

We begin with the calculation of P(Dy,—1 k-1 N Dy N Chp i j). The event that ¢
is a fixed point at stage n — 1 is the event {1 (i) = i}. We write

Dp-1k—1NDy i =

3.3
&) (Dy—1.5=1 N Do N {E,11(1) = i}) U (Dr—1,5—1 N Do N {11 (1) # 4}).

Let d,,,; denote the number of permutations in S,, with [ fixed points. Then

P(Dyp—1k-1) = d?;i’f)’!l. Given D,,_1 ,—1, the probability that Z;il(i) =1is %

Given D,,_1 1, the event D, ;, will occur if and only if j enters at stage n as a
fixed point; that is, if and only if ¥ !(j) = j. The probability of this is % On the
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event, Dy, 1 x—1 N Dy p N{S, 1, (i) = i}, one has X, (i) = i and X '(j) = j, and
thus the event C, ; ; occurs automatically. From the above facts we obtain

dn—1p-—1 k=11
m—1)!' n—1n

(3.4) P (Dn-1,k-1 N Dpp N {811 (1) =i} N Cryij) =

Given D,,_1 i—1, the probability that Z;il (i) #iis Z—:If Given the event Dy, _1 ;1N
Dx NS 1 () # 4}, B;,1(i) is equally distributed over [n] — {i,j}. Thus, given
this event, the event C), ; ; occurs with probability ib;_g From these facts we obtain

dp1p—1n—k1j—2
(n—1)!' n—1nn-2

(35) P (Dn-15-1 N Dy N{S,11(i) # i} N Chyy) =

From (3.3)—(3.5)), we conclude that

(3.6) P(Dy 151 NDpyNCrij) = ijzjkli)'l (n(kn— 11) + n((’;— 73))((]%—2))) .

We now turn to the calculation of P(Dy,—1,5 N Dy NChy s ;). Similar to what we
did in (3.3]), we write
Dn—l,k N Dn,k =

3.7
(37 (D16 N Dy N {11 (1) = i}) U (Pr—1,6 N Do N{E, 1 (0) #14})

We have P(D,_1) = ‘(i;:ll’)’j. Given D,,_1 1, the probability that X', (i) = i is
%. Given D,,_1 j, the event D,, ;, will occur if and only if person j entering at

stage n sits at a table that already has at least two people. (If person j starts a new
table, then ¥,, will have k + 1 fixed points, and if person j sits at a table that has
one person, then ¥,, will have k£ — 1 fixed points.) The probability of this is ”771“71
Given the event D,,_1 4 N D,y N{Z (i) = i}, ¥, 1(j) is uniformly distributed

n

over [n] — {4,}; thus given this event, the probability that C,, ; ; occurs is 21

From these facts, we obtain
(3.8)
P (Dne1k N Dy N{E,L () =i} N Chij) =

dpn—1,k k n—-k—1n—i—1
(n—1)'n-1 n n—2

We now calculate P (an,k N Dy i N {E;El(i) £i}N Cn,i’j). Given D,,_1 i, the

probability that E;ﬁl(i) #1418 ”;Ezl As noted above, given D,,_1 j, the event

Dy, will occur if and only if person j entering at stage n sits at a table that

n—k—1
n

to calculate the probability of Cy, ; ;, given Dy, 1 x N Dy, 1 N {Z;ll(i) # i}. We need

already has at least two people, and the probability of this is . We now need
to be somewhat careful here. Conditioned on the above event, ¥-* (i) is uniformly
distributed over [n] — {i,j}. Conditioned on the above event, ¥ 1(j) is uniformly

distributed over the n — k — 1 numbers that are not fixed points for ¥,,_1. These



INVERSIONS IN PERMUTATIONS WITH PRESCRIBED FIXED POINTS 13

n — k — 1 numbers include i. The other n — k — 2 such numbers are uniformly
distributed over all the (n — k — 2)-tuples in [n] — {7, j}. From this, it follows that
(3.9)

1 1
1 N 1N o . T
P(Enfl(l)*lhzn (])72)771—271—]6—1’ lle[n] {27]}5
1 4. 1. 1 1 o
P () =10, 5,1 (G) =) = o n_1 1€ [n] —{i,7};

ni2 Z:Zj ni?’, b # o, bl € [n] — {4, ).
If {1, (i) = 11,2, 1(4) = i} occurs with I; € [n] — {4,5}, then also ¥;1(i) = Iy,
and if {31,(i) = 1,,2;1(j) = l2)} occurs with Iy # Iy, l1,l2 € [n] — {i,j},
then also ¥;'(i) = I;. However, if {X.1,(i) = 11,2;%(j) = 1} occurs with
ly € [n] — {i,j}, then from the construction we have . 1(i) = j. Using this
with , it follows that conditioned on D15 N Dy N {E;il(i) # i}, the
probability of C,, ;; is ;;12 nfkfl + % n7i71 + %Z:ﬁ:?, which we write as
W}L—k—n (i=1+n—j+43(n—2)(n—k—3)). Thus, we conclude that

(3.10)

P D1k N Dy N{S, 21 (0) #i} N Crij) =

P2 6) =1, 271 () = ) =

dn—l,k n—k—1n—k—1 1 ) ) 1
(n=—1)! n-1 n (n_2)(n_k_1)(2—1+n—]+2(n—2)(n—k—3)).
From (3.7), and we obtain
(3.11)
dp_1,
P(’anl,k n Dn,k N Cn,i,j) _ (n _1113!
kn—k—-1)(n—-i-1) (n—k-1) . 1
( n(n —1)(n —2) n(n—1)(n_2)(“”"‘H2(”—2>(n—3—k)>).

We now turn to the calculation of P (Dy,—1 k41 N Dy N Ch i j). Similar to be-

fore, we write

Dp—1k+1 NDp i =
(Pn—1,k41 NP N{E,21(6) = i}) U (D141 N D N {E,1,(4) # 1)) .

We have P(D,_1 +1) = d"(gi‘f)ﬁl. Given D,,_1 k+1, the probability that Z;il(i) =
k1

iis 5. Given Dy, 1 k11, the event Dy, i will occur if and only if person j entering

(3.12)

at stage n sits at a table that has exactly one person already. (This reduces the
number of fixed points from k + 1 at stage n — 1 to k at stage n.) The probability
of this is % We now need to calculate the probability of C,, ; ;, given Dy,_1 41N
D,x N {21, (i) = i}. Given this event, person j has probability ﬁ of joining 4
in which case the event C,, ; ; does not occur. With probability kLH, person j will

join a table with a person other than ¢, and this person is uniformly distributed
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n—1—1
n—2 °

over [n] — {4, j}. Thus given the above event, the probability of C,, ; ; is kiﬂ

Thus, we conclude that

P (Dnt1gor1 N D N{E11(0) =i} N Crij) =

(3.13) dpyjir k+1k+1 k n—i—1
m—Yn-1 n k+1 n-2 "

We now calculate P (Dn_17k+1 N Dy i N {E;il(i) #i}N C’n,m). Given Dy,_1 j+1,
the probability that X1 (i) # i is “=2=%. As noted above, given D, 1 11, the

n—1

event D,, ;, will occur if and only if person j entering at stage n sits at a table
that has exactly one person already, and the probability of this is % We now
need to calculate the probability of Ci, ; j, given Dy g1 N Dy N {51 (i) # i}
Given this event, ¥, 1(i) and ¥, (j) are independent and uniformly distributed

over [n] — {i,j}; thus the probability of C,, ; ; is 3. Thus, we conclude that

P (Dp—1p+1 N D N{E,11(8) £} NChij) =
(3.14) dnrprin—2-kk+11
n=1)! n-1 n 2

From ([3.12)—(3.14)), we obtain
(3.15)

P(Dp-1k+1 NDnp NChrij) =

dorpsr ((k+Dk(—i—1) (n—2—k)(k+1)
n—1) ( nn—Un—2) ' 2n(n-1) )

From (3.2)), (8.6), (3.11) and (3.15)), it follows that P, (D,, xN{o,, (i) < o, (j)}) =
P(Dy 1 N Cy i j) is equal to the sum of the terms on the right hand sides of (3.6),

(3.11)) and (3.15)). Of course, jai (o,1(0) < o,1(5) = mPn(Dn)kﬁ{arjl(i) <
o7 (7). Also

n(n —1) _ _
(3.16) EWT, = — - > PW(o;t <ot

1<i<j<n

Thus to calculate Egk)ln, we will calculate

Y. PaDaxnfoy'i) <oy (D),

1<i<j<k

which is the sum of (3.6, (3.11]) and (3.15)) over the pairs 4, j satisfying 1 < i <

j<n.
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Using (2.21]), we have for the sum of over the pairs i, j satisfying 1 < i <
J<n,
(3.17)

> P(Dno1p—1 NDniNCryj) =

1<i<j<n

dp—1k-1 k-1 (n—Fk)(G—2)\  dn1r1
2 (n—1)! (n(n ) nf—1)(n— 2)) n—1)

1<i<j<n

( k=1 n(n—1) 2(n—k) nn-1) n—k (n—l)n(n—i—l))

nn—1) 2 nm—Dmn—-2) 2 T nn-D)mn-2 3
dn—l,k—l k—1 n—=k
(n—l)!( 2 T3 )

We now consider the sum of ([3.11)) over the pairs ¢, j satisfying 1 <i < j < n.
Using (2.21)), the sum of the first term on the second line of (3.11]) is

kin—k—1)(n—i—1
3 ( )( )

<iTi<n n(n—1)(n—2)

318) Kko—k-DHn-Vnn-1) kn-k-1) (n-Unn+1)
n(n —1)(n — 2) 2 n(n —1)(n — 2) 6
n—k—1/n—-1 n+1
S ( 2 6 )

Using ([2.21)), the sum of the second term on the second line of (3.11]) is
(3.19)

—(nikil) 1 — n—j 1n— n—3— =
> (n_l)(n_2)( l+n—j+35m=2)(n-3 k:))

1§i<j§nn
on—k-1 /L e\l
n(n—1)(n—2) ( L4350 =2)n-3 k)> 2
n—k—1 (m—-1Lnn+1) n-k-1/n-1 @n-2(n-3—-k n+l
n(n—1)(n — 2) 6 T on-2 ( y * 4 6 )

Thus, from (3.11)), (3.18) and (3.19), we obtain

dnflyk n—k—1
X

> P(Du-1k N PukN Cui) = 055~

1<i<j<n

(3.20) (k(”_l) k(n+1)+n—1+(n—2)(n—3—k)_n+1):

2 6 2 4 6
dnfl,k n—Fk—
(n—1)112(n -2

; (3n® —11n + (n — 2)k + 10) .
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Now we consider the sum of (3.15) over the pairs 4, j satisfying 1 < i < j < n.
Using (2.21)), we have

(3.21)
Z PDp-1 k41 NDpiNChij) =
 dugr (ke Dk—i—1)  (n—2—K)k+ 1)\
1§;§n n—1) ( nn—Un—2) ' 2nn-1) )_
dp—1 k+1 (k+1Dk(n—-1) (n—2-k)(k+1)\n(n—1)
n—1)! <<n(n—1)(n—2) L Ty ) 2

(k+ 1)k n—1)n(n+1 dp—1, kE+1 1
nmmim( i >>: (nl'T)?( : n+12(k+1)(k—6)>.

We conclude that 37, i<, Pu(DnN{0, (i) < 0,(4)}), is the sum of the right
hand sides of (3.17), and (3:21). Consequently, di<icj<n P,(Lk)(agl(i) <
o,1(4)) is the above noted sum divided by P, (D, x). It is easy to see that dp, , =
("™)dy—r, for 0 < r < m. Thus,

r

A 1 dpy — (1)
.22 LA -
(3:22) m! rl(m-—r) 7! ; n

where the last equality follows from (2.6]). For convenience in notation, let

mo_ 1\
(3.23) Em(—1) :Z( l}) :

=0

Thus, from (3.22)),

n—k
dn,k 1 (—l)l 1
FulDnk) = =53 :712 o e

Using this with (3.22)), we have

dn_1,k-1
(n—1)!

Pn(Dn,k)

A1k (—1)—k

(n—1)! (n—k)!
3.24 —_— =1
(3:24) BoDnr)  Enk(-1)

(_1)n7k'71 (_1 n—k

dn—1,k41
=y 1 Gy T iy oy

Pn(Dn,k) Tk +1 5n,k(—1)
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From the facts noted in the previous paragraph along with (3.24)), (3.17)), (3.20)
and (3.21)), we obtain

> e <o) =k (S5 4 E )+

—t 2 3
1<i<j<n
(23 e k—1
(n—kK)! n—~r— 2
1-— 3n —11 —2)k+10
£ () (12(n2)(n n+(n—2)k+ ))+
_qyn—k-1 _pyn-k
1 kDT T (k) k+1 1
— —(k+1)(k—06)]|.
k+1 En(—1) 7kt E=6)

From this and (3.16[), we obtain

(1=t
(k)T n—k—-1.,
1-—- 3n® —11 —2)k+10) | —
(3.25) ( En (1) <12(n_2)(” n+(n—2)k+ )>
) O s
iy e iy o 1
(n—k—1)! (n—k)! n
1- Dy k—6)).
( Enr(—1) <4+12(k 6>)
Now
n—k-1, , 1, 4+k 1
26) 1T (3p2 - - e (k4 D)(k—5).
(3.26) 12(n_2)(Sn 11n+ (n —2)k + 10) 1" G " 12(k+ )(k—5)

Consequently, the summands on the right hand side of (3.25) that do not involve
En(—1) are given by

(3.27)

n(n —1) k-1 n—k 1 5, 44k 1 n 1
LS 2 A e T Sk D) (k—5) - 2 — —(k—6) =
2 k(2+3>4”+6"+12(+)( ) =1 k=0

n(n—1) k—ln_ K —k—1
4 6 12 '
Writing % =—(n— k)% and using (3.26)), we can write the summands
on the right hand side of (3.25|) that involve &,(—1) as
(3.28)
(-

&L(:(ki!l)(in2—4+6kn—112(k+1)(k—5)+(—(n—k)+1)(Z+112(k—6))> _

_1\n—k
Gl (n-k-1
En—k(—1) 12 '

Now follows from ([3.25)), (3.27), (3.28) and (3.23).
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We now prove ([1.8). From the first two sentences in the paragraph following

(3.15)), along with (3.24)), it follows that
(3.29)

P ) < o) = b

—
1— _\n=k) X
gn—k(_l)

(k(nkl)(nzl) (n—k—1)

k—1 n (n—k)(j—-2) >+

(n—1) n(n-1)(n-2)

<i—1+n—j+;(n—2)(n—3—k)>)—|—

n(n—1)(n—2) n(n—1)(n—2)
1 1_ (:1122:’;;-1 + (_nl:z;;!]c
k+1 5n—k(71)
(k+Dkn—i—1) (n—2—-Fk)(k+1)
( nn—Un=2)  2a(n-1) )

With a lot of algebra, one can show that the summands on the right hand side of
(3-29) that do not involve &,(—1) satisfy

(3.30)
k-1 (n—k)(—2)

¥ (n(n— 1) * n(n—1)(n — 2)) +

kEln—k—-1)(n—-i-1) (n—k-1) (
n(n —1)(n — 2) n(n —1)(n —2)

k(n—1i—1) (n—2-k)

nn—1)(Mn-2) 2nn-1)

1 1

2 =D —2)

i—1+n—j+;(n—2)(n—3—k)>+

(k=1 —i)+ (K =3k +1)n—2(k* —k = 1)(j — ) .

Now (|1.8)) follows from (3.29)), (3.30]) and (3.23) O

With considerably more algebra, one can show that the summands on the right
hand side of (3.29) that involve &,(—1) can be written as

(—1)n—*
=N 1

X
n—k —1)!
i “) 2n(n—1)(n—2)

(3.31) (kng — (5k + 1)n? + (—k*(3 — 20)k® + 9k + 2(j — i) + 1)n+

2ik3 +2(i — 2)k2 — 2(j — i + 2)k — 2(j — i)).
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From (3.29)—(3.31) and (3.23]), it follows that the exact formula for PP (o' < oj_l)

is

(3.32)

PR (o7t <oi) =

%+ Qn(n_ll)(n_2)((2(k—1)(j—i)+k2—3k+1)n—2(k2—k—1)(j—i))+
(=p"*
(n—Fk)! 1

X
n—k —1)! _ _
i T) 2n(n —1)(n — 2)
(k}n3 — (k4 1)n2 + (—k3(3 — 20)k% + 9k + 2(j — i) + L)nt
2ik3 + 2(i — 2)k% — 2(j — i + 2)k — 2(j — i)).
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