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Abstract. We study how the inversion statistic is influenced by fixed points in

a permutation. For each n ∈ N, and each k ∈ {0, 1, · · · , n}, let P
(k)
n denote the

uniform probability measure on the set of permutations in Sn with exactly k

fixed points. We obtain an exact formula for the expected number of inversions

under the measure P
(k)
n as well as for P

(k)
n (σ−1

i < σ−1
j ), for 1 ≤ i < j ≤ n,

the P
(k)
n -probability that the number i precedes the number j. In particular,

up to a super-exponentially small correction as n→∞, the expected number

of inversions in a random derangement (k = 0) is 1
6
n+ 1

12
more than the value

n(n−1)
4

that one obtains for a uniformly random general permutation in Sn.

On the other hand, up to a super-exponentially small correction, for k ≥ 2, the

expected number of inversions in a random permutation with k fixed points

is k−1
6
n + k2−k−1

12
less than

n(n−1)
4

. In the borderline case, k = 1, up to a

super-exponentially small correction, the expected number of inversions in a

random permutation with one fixed point is 1
12

more than
n(n−1)

4
. We can

also let k and the pair i, j depend on n. As corollaries of the theorems we

obtain the asymptotic behavior of the expected number of inversions under

P
(kn)
n when kn →∞, for various regimes of kn, and the asymptotic behavior

of P
(kn)
n (σ−1

in
< σ−1

jn
), for various regimes of kn and of jn − in. The proofs

make strategic and perhaps novel use of the Chinese restaurant construction

for a uniformly random permutation.

1. Introduction and Statement of Results

In this paper, we study how the inversion statistic is influenced by fixed points

in a permutation. Let Pn denote the uniform probability measure on the set Sn of

permutations of [n] = {1, · · · , n}, and denote the expectation with respect to Pn

by En. We write σ ∈ Sn in one-line notation as σ = σ1 · · ·σn. Recall that σ is a

derangement if it has no fixed points; that is, if σi 6= i, for all i ∈ [n]. Let Dn ⊂ Sn
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denote the set of derangements in Sn. As is well-known [1, 4],

(1.1) Pn(Dn) =

n∑
l=0

(−1)l

l!
; lim

n→∞
Pn(Dn) = e−1.

Let In(σ) denote the number of inversions in σ; that is,

In(σ) =
∑

1≤i<j≤n

1{σj<σi} =
∑

1≤i<j≤n

1{σ−1
j <σ−1

i }
.

(Note that σ−1i is the position of the number i in the permutation σ.) By symmetry,

one has EnIn = n(n−1)
4 . Let In;<j(σ) =

∑
1≤i<j 1{σ−1

j <σ−1
i }

denote the number of

inversions in σ that involve the number j and a number less than j. Of course,

In =
∑n
j=2 In;<j . Under the uniform distribution, it is clear that In;<j is distributed

uniformly on {0, 1, · · · , j − 1}. Furthermore, it is known that under the uniform

distribution the random variables {In;<j}nj=2 are independent [3, 5]. Thus, In can

be represented as the sum of independent random variables. This leads easily to a

weak law of large numbers and a central limit theorem for the inversions statistic

[3]. One has

(1.2) lim
n→∞

Pn

(
(1− ε)n

2

4
≤ In ≤ (1 + ε)

n2

4

)
= 1, for all ε > 0,

and n−
3
2 (In − n2

4 )
dist→ N(0, 1

36 ).

Denote the uniform probability measure on Dn by P
(0)
n ; that is,

(1.3) P (0)
n (A) =

Pn(A ∩Dn)

Pn(Dn)
, A ⊂ Sn,

and let E
(0)
n denote the expectation with respect to P

(0)
n . From (1.1) and (1.3), it

follows that P
(0)
n is asymptotically absolutely continuous with respect to Pn, in the

sense that if a sequence of events {An}∞n=1, withAn ⊂ Sn, satisfies limn→∞ Pn(An) =

0, then also limn→∞ P
(0)
n (An) = 0. In light of this, it follows that the law of large

numbers also holds for In under the measure P
(0)
n ; that is, (1.2) also holds with Pn

replaced by P
(0)
n . From this and the fact that maxσ∈Sn

In(σ) = O(n2), if follows

that E
(0)
n In ∼ n2

4 .

What can be said about lower order terms in E
(0)
n In? Intuitively, it seems that

E
(0)
n In is larger than EnIn = n(n−1)

4 . Indeed, by symmetry considerations, for

any i ∈ [n], one has P
(0)
n (σ−1i = l) = 1

n−1 , l ∈ [n] − {i}. Thus under P
(0)
n , for

1 ≤ i < j ≤ n, the random variable σ−1i strictly stochastically dominates the

random variable σ−1j ; that is, P
(0)
n (σ−1i ≥ a) ≥ P

(0)
n (σ−1j ≥ a), for all a ∈ R, and

with strict inequality for at least one choice of a. On the other hand, under Pn,

the random variables σ−1i and σ−1j have the same distribution; namely they are
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uniformly distributed on [n]. This is only intuition and not a proof because σ−1i

and σ−1j are not independent under P
(0)
n or under Pn. We will calculate E

(0)
n In and

P
(0)
n (σ−1i < σ−1j ) explicitly, allowing one to see how much greater E

(0)
n In is than

EnIn and how much smaller P
(0)
n (σ−1i < σ−1j ) is than Pn(σ−1i < σ−1j ).

We now turn to permutations with a prescribed non-zero number of fixed points.

For k ∈ N, let Dn;k denote the set of permutations in Sn with exactly k fixed points;

that is

Dn;k = {σ ∈ Sn : |{i ∈ [n] : σ(i) = i}| = k}.

For convenience, define Dn;0 = Dn. It is well-known [1, 2] that under the uniform

measure Pn,

(1.4) lim
n→∞

Pn(Dn;k) =
e−1

k!
, k = 0, 1, · · · ;

equivalently, under Pn, the random variable that counts the number of fixed points

converges in distribution to the Poisson distribution with parameter one. Let P
(k)
n

denote the uniform probability measure on Dn;k; that is,

P (k)
n (A) =

Pn(A ∩Dn;k)

Pn(Dn;k)
, A ⊂ Sn,

and let E
(k)
n denote the expectation with respect to P

(k)
n . From (1.4) and the

reasoning above in the case k = 0, it follows that (1.2) also holds with Pn replaced

by P
(k)
n . Thus, as with the case k = 0, we have E

(k)
n In ∼ n2

4 . Which do we expect

to be larger, E
(k)
n In or EnIn = n(n−1)

4 ? It is instructive to consider the extreme

case in which k = n. Note that P
(n)
n is the δ-measure on the identity permutation;

thus, E
(n)
n In = 0. From this fact and the above intuition concerning the case k = 0,

it is natural to suspect that there is a threshold value of k (perhaps depending on

n), so that for k below the threshold, E
(k)
n In > EnIn, and for k above the threshold,

E
(k)
n In < EnIn. Since under the uniform measure, the expected number of fixed

points is easily seen to be equal to one for all n, the candidate k = 1 is an intuitive

choice for the threshold, at least for sufficiently large n. We will calculate E
(k)
n In

explicitly. In particular, we will see that the above noted threshold is indeed k = 1,

and we will see what happens at the threshold k = 1.

The first theorem below concerns derangements and the second one treats per-

mutations with a prescribed non-zero number of fixed points.
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Theorem 1. Let n ≥ 3.

i.

(1.5)

E(0)
n In =

n(n− 1)

4
+

1

6
n+

1

12
+

(−1)n
n!∑n

l=0
(−1)l
l!

(
n− 1

12

)
=

n(n− 1)

4
+

1

6
n+

1

12
+O

(
1

(n− 1)!

)
.

ii. Let 1 ≤ i < j ≤ n. Then

(1.6)

P (0)
n (σ−1i < σ−1j ) =

1

2
+

(
1− 2(j − i)

)
n+ 2(j − i)

2n(n− 1)(n− 2)
+

(−1)n
n!∑n

l=0
(−1)l
l!

2(j − i)− n
2n(n− 2)

=

1

2
+

(
1− 2(j − i)

)
n+ 2(j − i)

2n(n− 1)(n− 2)
+O

(
1

(n+ 1)!

)
.

Theorem 2. Let n ≥ 3 and let k ∈ {1, 2, · · · , n} − {n− 1}.
i.

(1.7)

E(k)
n In =

n(n− 1)

4
− k − 1

6
n− k2 − k − 1

12
+

(−1)n−k

(n−k)!∑n−k
l=0

(−1)l
l!

(
n− k − 1

12

)
=

n(n− 1)

4
− k − 1

6
n− k2 − k − 1

12
+O

(
1

(n− k − 1)!

)
.

ii. Let 1 ≤ i < j ≤ n. Then

(1.8)

P (k)
n (σ−1i < σ−1j ) =

1

2
+

1

2n(n− 1)(n− 2)

( (
2(k − 1)(j − i) + k2 − 3k + 1

)
n− 2(k2 − k − 1)(j − i)

)
+

O

(
1

(n− k)!

)
.

Remark. The precise formula for the term O
(

1
(n−k)!

)
in (1.8) can be found at the

end of the paper in (3.32).

Remark. From part (i) of Theorem 1, one sees that up to a super-exponentially

small correction as n → ∞, the expected number of inversions in the case of a

random derangement is 1
6n+ 1

12 more than it is for a uniformly random permutation.

On the other hand, from part (i) of Theorem 2, one sees that up to a super-

exponentially small correction, for k ≥ 2, the expected number of inversions in

a random permutation with k fixed points is k−1
6 n + k2−k−1

12 less than it is for a

uniformly random permutation. In particular, in both the case of derangements

(k = 0) and in the case k ≥ 2, this difference grows linearly in n. Now consider the
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borderline case, k = 1. As we noted above, for all n, the expected number of fixed

points in a uniformly random permutation is one. Theorem 2 shows that for all n,

up to a super-exponentially small correction, the expected number of inversions in

a random permutation with one fixed point is 1
12 more than it is for a uniformly

random permutation.

Remark. As we noted above, the random variable that counts the number of

fixed points in a uniformly random permutation of size n converges in distribution

as n → ∞ to the Poisson distribution with parameter one. Let X be a random

variable with this distribution. Then EX = 1 and EX2 = 2. If we substitute X

for k in the expression k−1
6 n+ k2−k−1

12 appearing in the formula for E
(k)
n In in part

(i) of Theorem 2 and take the expectation, we obtain E(X−16 n+ X2−X−1
12 ) = 0.

Note that since Theorem 2 is true for all k ∈ {1, · · · , n}, one can let k depend

on n: k = kn with limn→∞ kn = ∞. This leads to the following corollary which

follows by direct calculation.

Corollary 1. Assume that k = kn satisfies limn→∞ kn =∞.

i. If kn = o(n), then E
(kn)
n In ∼ n2

4 ;

ii. If kn ∼ cn, c ∈ (0, 1), then E
(kn)
n In ∼ 3−2c−c2

12 n2;

iii. If kn = n− ln, where ln ≥ 2 and ln = o(n), then E
(kn)
n In ∼ ln−1

3 n.

In part (ii) of both Theorems 1 and 2 one can let i and j depend on n: i =

in, j = jn. This leads to the following corollary which follows by direct calculation.

Corollary 2. Let 1 ≤ in < jn ≤ n.

i. Let k = 0 (the case of derangements). Then

0 ≤ 1

2
− P (0)

n (σ−1in < σ−1jn ) = θ(
jn − in
n2

).

ii. Let k = kn satisfy kn ≥ 2 and lim supn→∞
kn
n < 1. Then

0 ≤ P (kn)
n (σ−1in < σ−1jn )− 1

2
= θ

(
kn(jn − in) ∧ k2n

n2

)
.

iii. Let k = 1. Then

P (1)
n (σ−1in < σ−1jn ) =

1

2
+

1

2n(n− 1)(n− 2)

(
− n+ 2(jn − in)

)
+O(

1

(n− 1)!
).

In particular, for sufficiently large n, P
(1)
n (σ−1in < σ−1jn ) > 1

2 if jn − in > n
2 , and

P
(1)
n (σ−1in < σ−1jn ) < 1

2 if jn − in < n
2 .

The proofs of the two theorems make strategic and perhaps novel use of the

Chinese restaurant construction for a uniformly random permutation. We note that
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if one substitutes k = 0 in (1.7) and (1.8), these formulas reduce to (1.5) and (1.6)

respectively. We have presented the two results separately because derangements

are an important class of permutations and because the formulas are considerably

simpler for derangements. Furthermore, although the same general method is used

to prove the two theorems, there are some technical differences in the proofs, and

the calculations are much shorter for Theorem 1. Theorem 1 is proved in section 2

and Theorem 2 is proved in section 3.

We end this section with a description of the standard Chinese restaurant con-

struction. (A strategic alteration of the construction will be used in the proofs.)

This construction simultaneously yields a uniformly random permutation Σn in Sn,

for all n [6, 4]. Furthermore, the construction is consistent in the sense that if one

writes out the permutation Σn as the product of its cycles and deletes the number

n from the cycle in which it appears, then the resulting random permutation of

Sn−1 is equal to Σn−1.

The construction works as follows. Consider a restaurant with an unlimited

number of circular tables, each of which has an unlimited number of seats. Person

number 1 sits at a table. Now for n ≥ 1, suppose that persons number 1 through n

have already been seated. Then person number n+ 1 chooses a seat as follows. For

each j ∈ [n], with probability 1
n+1 , person number n+ 1 chooses to sit to the left of

person number j. Also, with probability 1
n+1 , person number n + 1 chooses to sit

at an unoccupied table. Now for each n ∈ N, the random permutation Σn ∈ Sn is

defined by Σn(i) = j, if after the first n persons have taken seats, person number j

is seated to the left of person number i.

2. Proof of Theorem 1

For the duration of the proof, n, i, j are fixed, with 1 ≤ i < j ≤ n. We begin by

calculating P
(0)
n (σ−1i < σ−1j ). This will prove part (ii) and will also be fundamen-

tal for the proof of part (i). We implement the Chinese restaurant construction,

described at the end of section 1, to build a uniformly random permutation in Sn.

However, we make one change. From the construction, it is clear that the n persons

can enter in any order we like, as we still obtain a uniformly random permutation

in Sn. We let the number j be the last of the n numbers to be used. That is, in

the language of the construction, person j chooses a seat last, after all the other

n− 1 persons with numbers in [n]−{j} have already chosen their seats. We denote

by Σn = Σn(1) · · ·Σn(n) the uniformly random permutation in Sn obtained via

this construction. Note that after n − 1 stages of the construction, a uniformly
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random permutation of [n] − {j} has been built. We denote this permutation by

Σn−1 = Σn−1(1) · · ·Σn−1(j − 1)Σn−1(j + 1) · · ·Σn−1(n). A fixed point for Σn−1 is

a number l ∈ [n] − {j} for which Σn−1(l) = l. We note for later use that the dis-

tribution of the number of fixed points in Σn−1 is the same as it is for a uniformly

random permutation of [n− 1]. We use the generic P to denote probabilities with

respect to the above construction.

We now define several events relative to the above construction. We note that

we are are reserving the notation Dl for the subset of derangements in Sl, l ∈ N.

Consequently, we denote by Dn−1 the event that Σn−1 has no fixed points and by

Dn the event that Σn has no fixed points. Denote by Dn−1,1 the event that Σn−1

has one fixed point. Then from the construction, it follows that

(2.1) Dn = (Dn−1 ∩ Dn) ∪ (Dn−1,1 ∩ Dn) .

Let

(2.2) Cn,i,j = {Σ−1n (i) < Σ−1n (j)}.

Note that Σ−1n (i) denotes the position of i in Σn. By (2.1),

(2.3) Dn ∩ Cn,i,j = (Dn−1 ∩ Dn ∩ Cn,i,j) ∪ (Dn−1,1 ∩ Dn ∩ Cn,i,j) .

Thus,

(2.4) P (0)
n (σ−1i < σ−1j ) =

P (Dn−1 ∩ Dn ∩ Cn,i,j)
P (Dn)

+
P (Dn−1,1 ∩ Dn ∩ Cn,i,j)

P (Dn)
.

We now calculate the first term on the right hand side of (2.4). From the

construction, it follows that conditioned on Dn−1, the random variable Σ−1n−1(i)

is uniformly distributed on [n] − {i, j}, and conditioned on Dn, the random vari-

able Σ−1n (j) is uniformly distributed on [n] − {j}. Furthermore, conditioned on

Dn−1∩Dn, the random variables Σ−1n−1(i) and Σ−1n (j) are independent; thus the ran-

dom vector
(
Σ−1n−1(i),Σ−1n (j)

)
is uniformly distributed on ([n]− {i, j})×([n]− {j}).

Note from the construction that if
(
Σ−1n−1(i),Σ−1n (j)

)
= (l1, l2) with l1 6= l2, then

Σ−1n (i) = l1, but if l1 = l2, then Σ−1n (i) = j. Thus, we conclude that

(2.5)

P
((

Σ−1n (i),Σ−1n (j)
)

= (l1, l2)|Dn−1 ∩ Dn
)

=
1

(n−2)(n−1) ; l1 6= l2, (l1, l2) ∈ ([n]− {i, j})× ([n]− {j}) ;

1
(n−2)(n−1) , l1 = j, l2 ∈ [n]− {i, j}.

.
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For each m ∈ N, let dm denote the number of derangements in Sm. From (1.1),

we have

(2.6) dm = m!

(
m∑
l=0

(−1)l

l!

)
.

We write

(2.7) P (Dm) =
dm
m!

.

From the construction, we have P (Dn|Dn−1) = n−1
n . Using this with (2.7) gives

(2.8) P (Dn−1 ∩ Dn) = (n− 1)
dn−1
n!

.

From (2.2), (2.5), and (2.8), we conclude that

(2.9)

P (Dn−1 ∩ Dn ∩ Cn,i,j) =

(n− 1)dn−1
n!

1

(n− 2)(n− 1)

n− j +
∑

l1∈[j−1]−{i}

(n− 1− l1) +

n∑
l1=j+1

(n− l1)

 .

We now calculate the second term on the right hand side of (2.4). Let dn−1,1

denote the number of permutations in Sn−1 with one fixed point. It follows easily

that dn−1,1 = (n− 1)dn−2, where dn−2 is as in (2.6). So

(2.10) P (Dn−1,1) =
dn−1,1

(n− 1)!
=

(n− 1)dn−2
(n− 1)!

=
dn−2

(n− 2)!
.

Conditioned on Dn−1,1, the event Dn occurs if and only if the number j, which

enters at stage n, joins the lone singleton existing at stage n− 1; the probability of

this is of course 1
n . Thus,

(2.11) P (Dn|Dn−1,1) =
1

n
.

From (2.10) and (2.11), we conclude that

(2.12) P (Dn−1,1 ∩ Dn) =
dn−2

n(n− 2)!
.

Now consider P (Cn,i,j |Dn−1,1 ∩ Dn). As we’ve already noted, for the event

Dn−1,1 ∩ Dn to occur, the number j must join the lone singleton existing at stage

n − 1. This singleton has equal probability of being any number in [n] − {j}. In

particular, with probability 1
n−1 , the number j will join the number i. In this

case Σ−1n (i) = j and Σ−1n (j) = i, and thus the event {Σ−1n (i) < Σ−1n (j)} does

not occur. Conditioned on the singleton not being i, it follows by symmetry that

(Σ−1n (i),Σ−1n (j)) is distributed uniformly on
(
[n]−{i, j}

)
×
(
[n]−{i, j}

)
. Thus, in
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this case, the event {Σ−1n (i) < Σ−1n (j)} occurs with probability 1
2 . From this, we

conclude that

(2.13) P (Cn,i,j |Dn−1,1 ∩ Dn) =
1

2

n− 2

n− 1
.

From (2.12) and (2.13), we obtain

(2.14) P (Dn−1,1 ∩ Dn ∩ Cn,i,j) =
1

2

n− 2

n− 1

dn−2
n(n− 2)!

=
1

2

(n− 2)dn−2
n!

.

From (2.4), (2.7), (2.9) and (2.14), we obtain

(2.15)
dn
n!
P (0)
n (σ−1i < σ−1j ) =

1

2

(n− 2)dn−2
n!

+

(n− 1)dn−1
n!

1

(n− 2)(n− 1)

n− j +
∑

l1∈[j−1]−{i}

(n− 1− l1) +

n∑
l1=j+1

(n− l1)

 .

Using the fact that
∑
l1∈[j−1]−{i} l1 = (j−1)j

2 − i and that
∑n
l1=j+1 l1 = n(n+1)

2 −
j(j+1)

2 , we can rewrite (2.15) as

(2.16)
dn
n!
P (0)
n (σ−1i < σ−1j ) =

1

2

(n− 2)dn−2
n!

+

dn−1
(n− 2)n!

(
(n− 1)(j − 2) + (n+ 1)(n− j)− (j − 1)j

2
+ i− n(n+ 1)

2
+
j(j + 1)

2

)
.

One has

(n−1)(j−2)+(n+1)(n−j)− (j − 1)j

2
+i−n(n+ 1)

2
+
j(j + 1)

2
=

1

2
n2− 3

2
n+i−j+2.

Thus, from (2.16) we have

(2.17)
dn
n!
P (0)
n (σ−1i < σ−1j ) =

1

2

(n− 2)dn−2
n!

+
dn−1

(n− 2)n!

(
1

2
n2 − 3

2
n+ i− j + 2

)
=

=
dn−2

(n− 2)!

(
1

2

n− 2

n(n− 1)

)
+

dn−1
(n− 1)!

1

n(n− 2)

(
1

2
n2 − 3

2
n+ i− j + 2

)
.

From (2.6), we have

(2.18)

dn−1

(n−1)!
dn
n!

= 1−
(−1)n
n!∑n

l=0
(−1)l
l!

,

dn−2

(n−2)!
dn
n!

= 1−
(−1)n−1

(n−1)! + (−1)n
n!∑n

l=0
(−1)l
l!

.

Also, we have

1

n(n− 2)

(
n2

2
− 3

2
n

)
=

1

2
− 1

2(n− 2)
.
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Using this with (2.18), we can rewrite (2.17) as

(2.19)

P (0)
n (σ−1i < σ−1j ) =

(
1−

(−1)n
n!∑n

l=0
(−1)l
l!

)(
1

2
− 1

2(n− 2)
+

2− (j − i)
n(n− 2)

)
+1−

(−1)n−1

(n−1)! + (−1)n
n!∑n

l=0
(−1)l
l!

 n− 2

2n(n− 1)
.

After some algebra, which we leave to the reader, (2.19) can be written as given in

(1.6). This proves part (ii) of the theorem.

We now turn to part (i) of the theorem. We have

(2.20) E0
nIn =

n(n− 1)

2
−

∑
1≤i<j≤n

P (0)
n (σ−1i < σ−1j ).

Using (1.6), we calculate
∑

1≤i<j≤n P
(0)
n (σ−1i < σ−1j ). We note that

(2.21)
∑

1≤i<j≤n

i =
1

6
(n− 1)n(n+ 1);

∑
1≤i<j≤n

j =
1

3
(n− 1)n(n+ 1).

We first sum over 1 ≤ i < j ≤ n the terms on the right hand side of the first line

of (1.6) that don’t involve
(−1)n

n!∑n
l=0

(−1)l

l!

. Using (2.21), we have

(2.22)∑
1≤i<j≤n

1

2
+

(
1− 2(j − i)

)
n+ 2(j − i)

)
2n(n− 1)(n− 2)

 =

1

4
n(n− 1)− n

2n(n− 1)(n− 2)

1

2
n(n− 1)− 2(n− 1)

2n(n− 1)(n− 2)

1

6
(n− 1)n(n+ 1) =

1

4
n(n− 1)− n

6
− 1

12
.

Now we sum over 1 ≤ i < j ≤ n the term multiplying
(−1)n

n!∑n
l=0

(−1)l

l!

on the right hand

side of the first line of (1.6). Using (2.21), we have

(2.23)∑
1≤i<j≤n

2(j − i)− n
2n(n− 2)

=
1

n(n− 2)

1

6
(n− 1)n(n+ 1)− 1

2(n− 2)

1

2
n(n− 1) =

1− n
12

.

From (1.6), (2.22) and (2.23), we conclude that

(2.24)
∑

1≤i<j≤n

P (0)
n (σ−1i < σ−1j ) =

1

4
n(n− 1)− n

6
− 1

12
+

(−1)n
n!∑n

l=0
(−1)l
l!

(
1− n

12

)
.

Now (1.5) follows from (2.20) and (2.24). This completes the proof of part (i) �
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3. Proof of Theorem 2

For the duration of the proof, n, i, j and k are fixed, with 1 ≤ i < j ≤ n

and 1 ≤ k ≤ n. We implement the Chinese restaurant construction in the same

way that it was implemented in the proof of Theorem 1; that is, the number j

enters at the final stage. Recall from the first paragraph of the proof of Theorem

1 that the uniformly random permutation in Sn obtained via the construction

is denoted by Σn = Σn(1) · · ·Σn(n), and the uniformly random permutation of

[n] − {j} obtained after the first n − 1 stages of the construction is denoted by

Σn−1 = Σn−1(1) · · ·Σn−1(j − 1)Σn−1(j + 1) · · ·Σn−1(n).

We now define several events relative to the above construction. We note that

we are are reserving the notation Dn,l for the subset of permutations in Sn with

l fixed points, l ∈ [n]. Consequently, we denote by Dn,k the event that Σn has

k fixed points, and we denote by Dn−1,l the event that Σn−1 has l fixed points,

l ∈ {0, 1, · · · , n− 1}. From the construction, it follows that

(3.1) Dn,k = (Dn−1,k−1 ∩ Dn,k) ∪ (Dn−1,k ∩ Dn,k) ∪ (Dn−1,k+1 ∩ Dn,k) .

(If k = n, we understand Dn−1,k to be the empty set and if k ∈ {n − 1, n}, we

understand Dn−1,k+1 to be the empty set.)

Let

Cn,i,j = {Σ−1n (i) < Σ−1n (j)},

as was defined in (2.2). By (3.1), we have

(3.2)

Dn,k ∩ Cn,i,j =

(Dn−1,k−1 ∩ Dn,k ∩ Cn,i,j) ∪ (Dn−1,k ∩ Dn,k ∩ Cn,i,j) ∪ (Dn−1,k+1 ∩ Dn,k ∩ Cn,i,j) .

We will calculate the probability of each of the three events in the union on the

right hand side of (3.2).

We begin with the calculation of P (Dn−1,k−1 ∩ Dn,k ∩ Cn,i,j). The event that i

is a fixed point at stage n− 1 is the event {Σ−1n−1(i) = i}. We write

(3.3)
Dn−1,k−1 ∩ Dn,k =(
Dn−1,k−1 ∩ Dn,k ∩ {Σ−1n−1(i) = i}

)
∪
(
Dn−1,k−1 ∩ Dn,k ∩ {Σ−1n−1(i) 6= i}

)
.

Let dm,l denote the number of permutations in Sm with l fixed points. Then

P (Dn−1,k−1) =
dn−1,k−1

(n−1)! . Given Dn−1,k−1, the probability that Σ−1n−1(i) = i is k−1
n−1 .

Given Dn−1,k−1, the event Dn,k will occur if and only if j enters at stage n as a

fixed point; that is, if and only if Σ−1n (j) = j. The probability of this is 1
n . On the
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event, Dn−1,k−1 ∩ Dn,k ∩ {Σ−1n−1(i) = i}, one has Σ−1n (i) = i and Σ−1n (j) = j, and

thus the event Cn,i,j occurs automatically. From the above facts we obtain

(3.4) P
(
Dn−1,k−1 ∩ Dn,k ∩ {Σ−1n−1(i) = i} ∩ Cn,i,j

)
=
dn−1,k−1
(n− 1)!

k − 1

n− 1

1

n
.

GivenDn−1,k−1, the probability that Σ−1n−1(i) 6= i is n−k
n−1 . Given the eventDn−1,k−1∩

Dn,k ∩ {Σ−1n−1(i) 6= i}, Σ−1n (i) is equally distributed over [n] − {i, j}. Thus, given

this event, the event Cn,i,j occurs with probability j−2
n−2 . From these facts we obtain

(3.5) P
(
Dn−1,k−1 ∩ Dn,k ∩ {Σ−1n−1(i) 6= i} ∩ Cn,i,j

)
=
dn−1,k−1
(n− 1)!

n− k
n− 1

1

n

j − 2

n− 2
.

From (3.3)–(3.5), we conclude that

(3.6) P (Dn−1,k−1 ∩ Dn,k ∩ Cn,i,j) =
dn−1,k−1
(n− 1)!

(
k − 1

n(n− 1)
+

(n− k)(j − 2)

n(n− 1)(n− 2)

)
.

We now turn to the calculation of P (Dn−1,k ∩Dn,k ∩Cn,i,j). Similar to what we

did in (3.3), we write

(3.7)
Dn−1,k ∩ Dn,k =(
Dn−1,k ∩ Dn,k ∩ {Σ−1n−1(i) = i}

)
∪
(
Dn−1,k ∩ Dn,k ∩ {Σ−1n−1(i) 6= i}

)
.

We have P (Dn−1,k) =
dn−1,k

(n−1)! . Given Dn−1,k, the probability that Σ−1n−1(i) = i is
k

n−1 . Given Dn−1,k, the event Dn,k will occur if and only if person j entering at

stage n sits at a table that already has at least two people. (If person j starts a new

table, then Σn will have k + 1 fixed points, and if person j sits at a table that has

one person, then Σn will have k− 1 fixed points.) The probability of this is n−k−1
n .

Given the event Dn−1,k ∩ Dn,k ∩ {Σ−1n−1(i) = i}, Σ−1n (j) is uniformly distributed

over [n]− {i, j}; thus given this event, the probability that Cn,i,j occurs is n−i−1
n−2 .

From these facts, we obtain

(3.8)

P
(
Dn−1,k ∩ Dn,k ∩ {Σ−1n−1(i) = i} ∩ Cn,i,j

)
=

dn−1,k
(n− 1)!

k

n− 1

n− k − 1

n

n− i− 1

n− 2
.

We now calculate P
(
Dn−1,k ∩ Dn,k ∩ {Σ−1n−1(i) 6= i} ∩ Cn,i,j

)
. Given Dn−1,k, the

probability that Σ−1n−1(i) 6= i is n−k−1
n−1 . As noted above, given Dn−1,k, the event

Dn,k will occur if and only if person j entering at stage n sits at a table that

already has at least two people, and the probability of this is n−k−1
n . We now need

to calculate the probability of Cn,i,j , given Dn−1,k∩Dn,k∩{Σ−1n−1(i) 6= i}. We need

to be somewhat careful here. Conditioned on the above event, Σ−1n−1(i) is uniformly

distributed over [n] − {i, j}. Conditioned on the above event, Σ−1n (j) is uniformly

distributed over the n − k − 1 numbers that are not fixed points for Σn−1. These
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n − k − 1 numbers include i. The other n − k − 2 such numbers are uniformly

distributed over all the (n− k − 2)-tuples in [n]− {i, j}. From this, it follows that

(3.9)

P (Σ−1n−1(i) = l1,Σ
−1
n (j) = i) =

1

n− 2

1

n− k − 1
; l1 ∈ [n]− {i, j};

P (Σ−1n−1(i) = l1,Σ
−1
n (j) = l1) =

1

n− 2

1

n− k − 1
, l1 ∈ [n]− {i, j};

P (Σ−1n−1(i) = l1,Σ
−1
n (j) = l2) =

1

n− 2

n− k − 3

n− k − 1

1

n− 3
, l1 6= l2, l1, l2 ∈ [n]− {i, j}.

If {Σ−1n−1(i) = l1,Σ
−1
n (j) = i} occurs with l1 ∈ [n] − {i, j}, then also Σ−1n (i) = l1,

and if {Σ−1n−1(i) = l1,Σ
−1
n (j) = l2)} occurs with l1 6= l2, l1, l2 ∈ [n] − {i, j},

then also Σ−1n (i) = l1. However, if {Σ−1n−1(i) = l1,Σ
−1
n (j) = l1} occurs with

l1 ∈ [n] − {i, j}, then from the construction we have Σ−1n (i) = j. Using this

with (3.9), it follows that conditioned on Dn−1,k ∩ Dn,k ∩ {Σ−1n−1(i) 6= i}, the

probability of Cn,i,j is i−1
n−2

1
n−k−1 + n−j

n−2
1

n−k−1 + 1
2
n−k−3
n−k−1 , which we write as

1
(n−2)(n−k−1)

(
i− 1 + n− j + 1

2 (n− 2)(n− k − 3)
)
. Thus, we conclude that

(3.10)

P
(
Dn−1,k ∩ Dn,k ∩ {Σ−1n−1(i) 6= i} ∩ Cn,i,j

)
=

dn−1,k
(n− 1)!

n− k − 1

n− 1

n− k − 1

n

1

(n− 2)(n− k − 1)

(
i− 1 + n− j +

1

2
(n− 2)(n− k − 3)

)
.

From (3.7), (3.8) and (3.10) we obtain

(3.11)

P (Dn−1,k ∩ Dn,k ∩ Cn,i,j) =
dn−1,k

(n− 1)!
×(k(n− k − 1)(n− i− 1)

n(n− 1)(n− 2)
+

(n− k − 1)

n(n− 1)(n− 2)

(
i− 1 + n− j +

1

2
(n− 2)(n− 3− k)

))
.

We now turn to the calculation of P (Dn−1,k+1 ∩ Dn,k ∩ Cn,i,j). Similar to be-

fore, we write

(3.12)
Dn−1,k+1 ∩ Dn,k =(
Dn−1,k+1 ∩ Dn,k ∩ {Σ−1n−1(i) = i}

)
∪
(
Dn−1,k+1 ∩ Dn,k ∩ {Σ−1n−1(i) 6= i}

)
.

We have P (Dn−1,k+1) =
dn−1,k+1

(n−1)! . Given Dn−1,k+1, the probability that Σ−1n−1(i) =

i is k+1
n−1 . Given Dn−1,k+1, the event Dn,k will occur if and only if person j entering

at stage n sits at a table that has exactly one person already. (This reduces the

number of fixed points from k + 1 at stage n− 1 to k at stage n.) The probability

of this is k+1
n . We now need to calculate the probability of Cn,i,j , given Dn−1,k+1 ∩

Dn,k ∩ {Σ−1n−1(i) = i}. Given this event, person j has probability 1
k+1 of joining i

in which case the event Cn,i,j does not occur. With probability k
k+1 , person j will

join a table with a person other than i, and this person is uniformly distributed
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over [n]−{i, j}. Thus given the above event, the probability of Cn,i,j is k
k+1

n−1−i
n−2 .

Thus, we conclude that

(3.13)

P
(
Dn−1,k+1 ∩ Dn,k ∩ {Σ−1n−1(i) = i} ∩ Cn,i,j

)
=

dn−1,k+1

(n− 1)!

k + 1

n− 1

k + 1

n

k

k + 1

n− i− 1

n− 2
.

We now calculate P
(
Dn−1,k+1 ∩ Dn,k ∩ {Σ−1n−1(i) 6= i} ∩ Cn,i,j

)
. GivenDn−1,k+1,

the probability that Σ−1n−1(i) 6= i is n−2−k
n−1 . As noted above, given Dn−1,k+1, the

event Dn,k will occur if and only if person j entering at stage n sits at a table

that has exactly one person already, and the probability of this is k+1
n . We now

need to calculate the probability of Cn,i,j , given Dn−1,k+1 ∩ Dn,k ∩ {Σ−1n−1(i) 6= i}.
Given this event, Σ−1n (i) and Σ−1n (j) are independent and uniformly distributed

over [n]− {i, j}; thus the probability of Cn,i,j is 1
2 . Thus, we conclude that

(3.14)

P
(
Dn−1,k+1 ∩ Dn,k ∩ {Σ−1n−1(i) 6= i} ∩ Cn,i,j

)
=

dn−1,k+1

(n− 1)!

n− 2− k
n− 1

k + 1

n

1

2
.

From (3.12)–(3.14), we obtain

(3.15)

P (Dn−1,k+1 ∩ Dn,k ∩ Cn,i,j) =
dn−1,k+1

(n− 1)!

(
(k + 1)k(n− i− 1)

n(n− 1)(n− 2)
+

(n− 2− k)(k + 1)

2n(n− 1)

)
.

From (3.2), (3.6), (3.11) and (3.15), it follows that Pn(Dn,k∩{σ−1n (i) < σ−1n (j)}) =

P (Dn,k ∩ Cn,i,j) is equal to the sum of the terms on the right hand sides of (3.6),

(3.11) and (3.15). Of course, P
(k)
n (σ−1n (i) < σ−1n (j)) = 1

Pn(Dn,k)
Pn(Dn,k∩{σ−1n (i) <

σ−1n (j)}). Also

(3.16) E(k)
n In =

n(n− 1)

2
−

∑
1≤i<j≤n

P (k)
n (σ−1i < σ−1j ).

Thus to calculate E
(k)
n In, we will calculate

∑
1≤i<j≤k

Pn(Dn,k ∩ {σ−1n (i) < σ−1n (j)}),

which is the sum of (3.6), (3.11) and (3.15) over the pairs i, j satisfying 1 ≤ i <

j ≤ n.
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Using (2.21), we have for the sum of (3.6) over the pairs i, j satisfying 1 ≤ i <

j ≤ n,

(3.17)∑
1≤i<j≤n

P (Dn−1,k−1 ∩ Dn,k ∩ Cn,i,j) =

∑
1≤i<j≤n

dn−1,k−1
(n− 1)!

(
k − 1

n(n− 1)
+

(n− k)(j − 2)

n(n− 1)(n− 2)

)
=
dn−1,k−1
(n− 1)!

×

(
k − 1

n(n− 1)

n(n− 1)

2
− 2(n− k)

n(n− 1)(n− 2)

n(n− 1)

2
+

n− k
n(n− 1)(n− 2)

(n− 1)n(n+ 1)

3

)
=

dn−1,k−1
(n− 1)!

(
k − 1

2
+
n− k

3

)
.

We now consider the sum of (3.11) over the pairs i, j satisfying 1 ≤ i < j ≤ n.

Using (2.21), the sum of the first term on the second line of (3.11) is

(3.18)

∑
1≤i<j≤n

k(n− k − 1)(n− i− 1)

n(n− 1)(n− 2)
=

k(n− k − 1)(n− 1)

n(n− 1)(n− 2)

n(n− 1)

2
− k(n− k − 1)

n(n− 1)(n− 2)

(n− 1)n(n+ 1)

6
=

k
n− k − 1

n− 2

(
n− 1

2
− n+ 1

6

)
.

Using (2.21), the sum of the second term on the second line of (3.11) is

(3.19)∑
1≤i<j≤n

(n− k − 1)

n(n− 1)(n− 2)

(
i− 1 + n− j +

1

2
(n− 2)(n− 3− k)

)
=

n− k − 1

n(n− 1)(n− 2)

(
n− 1 +

1

2
(n− 2)(n− 3− k)

)
n(n− 1)

2
−

n− k − 1

n(n− 1)(n− 2)

(n− 1)n(n+ 1)

6
=
n− k − 1

n− 2

(
n− 1

2
+

(n− 2)(n− 3− k)

4
− n+ 1

6

)
.

Thus, from (3.11), (3.18) and (3.19), we obtain

(3.20)

∑
1≤i<j≤n

P (Dn−1,k ∩ Dn,k ∩ Cn,i,j) =
dn−1,k

(n− 1)!

n− k − 1

n− 2
×

(
k(n− 1)

2
− k(n+ 1)

6
+
n− 1

2
+

(n− 2)(n− 3− k)

4
− n+ 1

6

)
=

dn−1,k
(n− 1)!

n− k − 1

12(n− 2)

(
3n2 − 11n+ (n− 2)k + 10

)
.
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Now we consider the sum of (3.15) over the pairs i, j satisfying 1 ≤ i < j ≤ n.

Using (2.21), we have

(3.21)∑
1≤i<j≤n

P (Dn−1,k+1 ∩ Dn,k ∩ Cn,i,j) =

∑
1≤i<j≤n

dn−1,k+1

(n− 1)!

(
(k + 1)k(n− i− 1)

n(n− 1)(n− 2)
+

(n− 2− k)(k + 1)

2n(n− 1)

)
=

dn−1,k+1

(n− 1)!

((
(k + 1)k(n− 1)

n(n− 1)(n− 2)
+

(n− 2− k)(k + 1)

2n(n− 1)

)
n(n− 1)

2
−

(k + 1)k

n(n− 1)(n− 2)

(n− 1)n(n+ 1)

6

)
=
dn−1,k+1

(n− 1)!

(
k + 1

4
n+

1

12
(k + 1)(k − 6)

)
.

We conclude that
∑

1≤i<j≤n Pn(Dn∩{σ−1n (i) < σ−1n (j)}), is the sum of the right

hand sides of (3.17), (3.20) and (3.21). Consequently,
∑

1≤i<j≤n P
(k)
n (σ−1n (i) <

σ−1n (j)) is the above noted sum divided by Pn(Dn,k). It is easy to see that dm,r =(
m
r

)
dm−r, for 0 ≤ r ≤ m. Thus,

(3.22)
dm,r
m!

=
1

r!

dm−r
(m− r)!

=
1

r!

m−r∑
l=0

(−1)l

l!
,

where the last equality follows from (2.6). For convenience in notation, let

(3.23) Em(−1) =

m∑
l=0

(−1)l

l!
.

Thus, from (3.22),

Pn(Dn,k) =
dn,k
n!

=
1

k!

n−k∑
l=0

(−1)l

l!
=

1

k!
En−k(−1).

Using this with (3.22), we have

(3.24)

dn−1,k−1

(n−1)!

Pn(Dn,k)
= k;

dn−1,k

(n−1)!

Pn(Dn,k)
= 1−

(−1)n−k

(n−k)!

En−k(−1)
;

dn−1,k+1

(n−1)!

Pn(Dn,k)
=

1

k + 1

1−
(−1)n−k−1

(n−k−1)! + (−1)n−k

(n−k)!

En−k(−1)

 .
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From the facts noted in the previous paragraph along with (3.24), (3.17), (3.20)

and (3.21), we obtain∑
1≤i<j≤n

P (k)
n (σ−1n (i) < σ−1n (j)) = k

(
k − 1

2
+
n− k

3

)
+

1−
(−1)n−k

(n−k)!

En−k(−1)

(n− k − 1

12(n− 2)

(
3n2 − 11n+ (n− 2)k + 10

))
+

1

k + 1

1−
(−1)n−k−1

(n−k−1)! + (−1)n−k

(n−k)!

En−k(−1)

(k + 1

4
n+

1

12
(k + 1)(k − 6)

)
.

From this and (3.16), we obtain

(3.25)

E(k)
n In =

n(n− 1)

2
− k

(
k − 1

2
+
n− k

3

)
−1−

(−1)n−k

(n−k)!

En−k(−1)

(n− k − 1

12(n− 2)

(
3n2 − 11n+ (n− 2)k + 10

))
−

1−
(−1)n−k−1

(n−k−1)! + (−1)n−k

(n−k)!

En−k(−1)

(n
4

+
1

12
(k − 6)

)
.

Now

(3.26)
n− k − 1

12(n− 2)
(3n2 − 11n+ (n− 2)k+ 10) =

1

4
n2 − 4 + k

6
n− 1

12
(k+ 1)(k− 5).

Consequently, the summands on the right hand side of (3.25) that do not involve

En(−1) are given by

(3.27)
n(n− 1)

2
− k

(
k − 1

2
+
n− k

3

)
− 1

4
n2 +

4 + k

6
n+

1

12
(k + 1)(k − 5)− n

4
− 1

12
(k − 6) =

n(n− 1)

4
− k − 1

6
n− k2 − k − 1

12
.

Writing (−1)n−k−1

(n−k−1)! = −(n−k) (−1)n−k

(n−k)! and using (3.26), we can write the summands

on the right hand side of (3.25) that involve En(−1) as

(3.28)
(−1)n−k

(n−k)!

En−k(−1)

(
1

4
n2 − 4 + k

6
n− 1

12
(k + 1)(k − 5) +

(
− (n− k) + 1

)(n
4

+
1

12
(k − 6)

))
=

(−1)n−k

(n−k)!

En−k(−1)

(
n− k − 1

12

)
.

Now (1.7) follows from (3.25), (3.27), (3.28) and (3.23).
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We now prove (1.8). From the first two sentences in the paragraph following

(3.15), along with (3.24), it follows that

(3.29)

P (k)
n (σ−1n (i) < σ−1n (j)) = k

(
k − 1

n(n− 1)
+

(n− k)(j − 2)

n(n− 1)(n− 2)

)
+1−

(−1)n−k

(n−k)!

En−k(−1)

×
(
k(n− k − 1)(n− i− 1)

n(n− 1)(n− 2)
+

(n− k − 1)

n(n− 1)(n− 2)

(
i− 1 + n− j +

1

2
(n− 2)(n− 3− k)

))
+

1

k + 1

1−
(−1)n−k−1

(n−k−1)! + (−1)n−k

(n−k)!

En−k(−1)

×
(

(k + 1)k(n− i− 1)

n(n− 1)(n− 2)
+

(n− 2− k)(k + 1)

2n(n− 1)

)
.

With a lot of algebra, one can show that the summands on the right hand side of

(3.29) that do not involve En(−1) satisfy

(3.30)

k

(
k − 1

n(n− 1)
+

(n− k)(j − 2)

n(n− 1)(n− 2)

)
+

k(n− k − 1)(n− i− 1)

n(n− 1)(n− 2)
+

(n− k − 1)

n(n− 1)(n− 2)

(
i− 1 + n− j +

1

2
(n− 2)(n− 3− k)

)
+

k(n− i− 1)

n(n− 1)(n− 2)
+

(n− 2− k)

2n(n− 1)
=

1

2
+

1

2n(n− 1)(n− 2)

((
2(k − 1)(j − i) + (k2 − 3k + 1)n− 2(k2 − k − 1)(j − i)

)
.

Now (1.8) follows from (3.29), (3.30) and (3.23) �

With considerably more algebra, one can show that the summands on the right

hand side of (3.29) that involve En(−1) can be written as

(3.31)

(−1)n−k

(n−k)!∑n−k
l=0

−1)l
l!

1

2n(n− 1)(n− 2)
×(

kn3 − (5k + 1)n2 + (−k3(3− 2i)k2 + 9k + 2(j − i) + 1)n+

2ik3 + 2(i− 2)k2 − 2(j − i+ 2)k − 2(j − i)
)
.
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From (3.29)–(3.31) and (3.23), it follows that the exact formula for P
(k)
n (σ−1i < σ−1j )

is

(3.32)

P (k)
n (σ−1i < σ−1j ) =

1

2
+

1

2n(n− 1)(n− 2)

( (
2(k − 1)(j − i) + k2 − 3k + 1

)
n− 2(k2 − k − 1)(j − i)

)
+

(−1)n−k

(n−k)!∑n−k
l=0

−1)l
l!

1

2n(n− 1)(n− 2)
×(

kn3 − (5k + 1)n2 + (−k3(3− 2i)k2 + 9k + 2(j − i) + 1)n+

2ik3 + 2(i− 2)k2 − 2(j − i+ 2)k − 2(j − i)
)
.
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