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Abstract. We introduce a rather natural family of non-uniform dis-

tributions on PFn, n ∈ N, the set of parking functions of length n. One

of the motivations for this comes from a similar situation in the context

of integer partitions. For a permutation σ ∈ Sn and for j ∈ [n], let

In,<j(σ) denote the number of inversions in σ that involve the number

j and a number less than j. Let Ĩn,<j(σ) = In,<j(σ) + 1. The map

(σ, τ)→
(
Ĩn,<τ1(σ), · · · , Ĩn,<τn(σ)

)
maps Sn × Sn onto PFn. Consider

the family of distributions P
(q)
n × Pn, q ∈ (0,∞), on Sn × Sn, where Pn

is the uniform distribution on Sn and P
(q)
n is the Mallows distribution

with parameter q on Sn. The Mallows distributions are defined by expo-

nential tilting via the inversion statistic. For each q > 0, the above map

along with the distribution P
(q)
n ×Pn induces an exchangeable distribu-

tion P(q)
n on PFn. We study the asymptotic behavior of two fundamental

statistics of parking functions under the family of distributions P(q)
n .

1. Introduction and Statement of Results

In this paper, we introduce a rather natural family of non-uniform dis-

tributions on PFn, n ∈ N, the set of parking functions of length n. One

of the motivations for this comes from a similar situation in the context of

Λn, n ∈ N, the set of partitions of n, as will be described at the end of this

section. We begin by recalling the definition of a parking function. Consider

a row of n parking spaces on a one-way street. A line of n cars, numbered

from 1 to n, attempt to park, one at a time. The ith car’s preferred space

is spot number πi ∈ [n]. If this space is already taken, then car i proceeds
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forward and parks in the first available space, if one exists. If the car is un-

able to park, it exits the street. A sequence π = {πi}ni=1 is called a parking

function on [n] if all n cars are able to park. It is easy to see that π is a

parking function if and only if

(1.1) |{i : πi ≤ j}| ≥ j, for all j ∈ [n].

It is well-known that |PFn| = (n + 1)n−1. There are a number of proofs

of this result; a particularly elegant one due to Pollack can be found in [4].

Parking functions are a fundamental combinatorial object; for a survey of

parking functions and their generalizations and some applications, see the

article by Yan [8].

One can consider random parking functions by placing the uniform proba-

bility measure on PFn. A fundamental fact about a parking function is that

it remains a parking function after any permutation of its coordinates; thus,

the uniform measure on PFn is exchangeable. A study of random parking

functions was initiated by Diaconis and Hicks in the fundamental paper [3],

where many interesting properties of random parking functions are proved;

see also the article by Bellin [2]. In this paper we consider a family of non-

uniform, exchangeable distributions on PFn that arises naturally through

the inversion statistic for permutations.

Denote by Sn the set of permutations of [n], and write in one-line notation

σ = σ1 · · ·σn ∈ Sn. Recall that the inversion statistic In on Sn is defined by

In(σ) =
∑

1≤i<j≤n
1σj<σi =

∑
1≤i<j≤n

1σ−1
j <σ−1

i
.

(Note that σ−1k is the position of k in σ.) For j ∈ [n], let In,<j(σ) denote

the number of inversions in σ that involve the number j and a number less

than j; that is, In,<j(σ) =
∑

1≤i<j 1σ−1
j <σ−1

i
. Of course In,<1 ≡ 0, and

In =
∑n

j=1 In,<j .

For convenience, define Ĩn,<j := In,<j + 1. We have

(1.2) 1 ≤ Ĩn,<j(σ) ≤ j, j ∈ [n], σ ∈ Sn.

As is well known, the map that takes σ ∈ Sn to the vector
(
Ĩn,<1(σ), · · · , Ĩn,<n(σ)

)
∈

[1]×· · ·×[n] is a bijection. (The vector
(
Ĩn,<1(σ), · · · , Ĩn,<n(σ)

)
or an equiv-

alent variant is called the Lehmer code of the permutation.)
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In light of (1.2) and (1.1), it follows that

(1.3)
(
Ĩn,<τ1(σ), · · · , Ĩn,<τn(σ)

)
∈ PFn, for each pair (σ, τ) ∈ Sn × Sn.

Let Pn denote the uniform probability measure on Sn, and let Qn be an

arbitrary probability measure on Sn. Then (1.3) and the probability measure

Qn × Pn on Sn × Sn induce an exchangeable probability measure on PFn.

We will consider the probability measures P
(q)
n ×Pn, q ∈ (0,∞), on Sn×Sn,

where P
(q)
n is the Mallows measure with parameter q. The Mallows measures

are defined by exponential tilting via the inversion statistic. More precisely,

P (q)
n (σ) =

qIn(σ)

Kn
, σ ∈ Sn, q ∈ (0,∞),

where the normalization constant Kn is given by Kn = (1−q)n∏n
j=1(1−qj)

. Of

course, P
(1)
n is the uniform distribution on Sn. For q > 1, the probability

P
(q)
n favors permutations with many inversions and for q ∈ (0, 1) it favors

permutations with few inversions. A fundamental fact about Mallows dis-

tributions is that under P
(q)
n the random variables {In,<j}nj=1 are indepen-

dent with truncated geometric distributions starting at zero [7], and thus

{Ĩn,<j}nj=1 are independent with truncated geometric distributions starting

at one. More specifically, the distributions are given by

(1.4) P (q)
n (Ĩn,<j = i) =


1−q
1−qj q

i−1, i = 1, · · · , j, q ∈ (0,∞)− {1};
1
j , i = 1, · · · , j, q = 1.

Let P(q)
n denote the probability measure on the set of parking functions

PFn that is induced by (1.3) and the measure P
(q)
n × Pn on Sn × Sn. The

fact that {Ĩn,<j}nj=1 are independent with truncated geometric distributions

makes the analysis of certain statistics of parking functions under the mea-

sures P(q)
n quite accessible.

We note that it is easy to simulate a pair of P
(q)
n × Pn-random permuta-

tions. Thus, it is easy to simulate a P(q)
n -random parking function in PFn.

We are unaware of a natural way to simulate a uniformly random parking

function in PFn.

We will consider the behavior of two fundamental statistics of PFn that

are very amenable to analysis under the measures P(q)
n . Actually we will

allow q to depend on n: q = qn. The reason for this is that small changes
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in qn when qn is near 1 can have a dramatic influence on the asymptotic

behavior of the measures P
(qn)
n on permutations and in turn on the measures

P(qn)
n on parking functions. To see this influence on permutations, we note

the following behavior of the inversion statistic under P
(qn)
n , which follows

from [7] along with the well-known fact that P
(q)
n (σ) = P

( 1
q
)

n (σrev), where

the reversal σrev of σ is defined by σrev = σnσn−1 · · ·σ1.

(1.5)

E(1)
n In =

n(n− 1)

4
;

E
(1− c

n
)

n In ∼ k−c n2, c > 0,where k−c ∈ (0,
1

4
) is an explicit constant

satisfying lim
c→0

k−c =
1

4
; lim
c→∞

k−c = 0;

E
(1− c

nα
)

n In ∼
n1+α

c
, c > 0, α ∈ (0, 1);

E(q)
n In ∼

q

1− q
n, 0 < q < 1;

E
(1+ c

n
)

n In ∼ k+c n2, c > 0,where k+c ∈ (
1

4
,
1

2
) is an explicit constant

satisfying lim
c→0

k+c =
1

4
; lim
c→∞

k+c =
1

2
;

E
(1+ c

nα
)

n In =
n2

2
− n1+α

c
+ o(n1+α), c > 0, α ∈ (0, 1);

E(q)
n In =

n(n− 1)

2
− 1

q − 1
n+ o(n), q > 1.

We now turn to our results for the measures P(qn)
n . We first consider the

asymptotic behavior of the coordinate π1 in π = (π1, · · · , πn) under P(qn)
n

(by exchangeability, all of the coordinates πj have the same distribution).

In the notation, we suppress the dependence of π1 on n. For comparison,

we first state the following theorem which encapsulates some results from

[3] in the case of the uniform distribution on parking functions.

Theorem DH (Diaconis-Hicks). Consider π1 under Punif
n , the uniform mea-

sure on the set PFn of parking functions of length n.

i. π1
n converges in the total variation norm to the uniform distribution on

[0, 1];

ii. E unif
n π1 = n

2 −
√
2π
4 n

1
2 (1 + o(1));
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iii. Let X be a random variable with the Borel distribution: P (X = j) =

e−j j
j−1

j! , j = 1, 2, · · · . Then

Punif
n (π1 = k) ∼ 1 + P (X ≥ k)

n
, for fixed k = 1, 2, · · · ;

Punif
n (π1 = n− k) ∼ P (X ≤ k + 1)

n
, for fixed k = 0, 1, 2, · · · .

In particular, Punif
n (π1 = 1) ∼ 2

n and Punif
n (π1 = n) ∼ 1

en .

Remark. From the definition of a parking function it is intuitively clear

that Punif
n (π1 = j) is decreasing in j ∈ [n]; a formal proof can be found in

[3]. The above theorem and its proof show that the probabilistic advantage

of smaller numbers disappears as n→∞, except for a remnant that can be

seen in the “corners”.

Turning to the measure P(q)
n , we begin with a basic and useful fact.

Proposition 1. Let n ≥ 2. The random variable π1 under P(q)
n is strictly

stochastically increasing in q; specifically, if q′ < q′′, then P(q′)
n (π1 ≥ k) <

P(q′′)
n (π1 ≥ k), for k = 2, · · · , n.

It is easy to see from the definition of P(1)
n that P(1)

n (π1 = j) is decreasing

in j ∈ [n]. And it is not hard to see intuitively from the construction that

this advantage to smaller numbers is stronger than it is in the case of the

uniform measure Punif
n on PFn. In light of Proposition 1, this advantage

becomes even more pronounced when qn < 1. For qn > 1, this advantage

begins to break down. All of this will be seen quantitatively in the theorems

below. We begin with the case qn ≡ 1.

Theorem 1. Consider π1 under the measure P(1)
n .

i. π1
n converges in distribution to the distribution on [0, 1] with density

− log x, x ∈ (0, 1];

ii. E(1)n π1 = n+3
4 ;

iii. P(1)
n (π1 = kn) ∼ logn

n , for 1 ≤ kn = o(n);

iv. P(1)
n (π1 = kn) ∼ − log d

n , for kn ∼ dn, d ∈ (0, 1);

v. P(1)
n (π1 = n− kn) ∼ 1+kn

n2 , for 0 ≤ kn = o(n).

Remark 1. Unlike in the case of the uniform measure on parking functions,

in the case of the measure P(1)
n , the advantage to smaller numbers remains
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in the limit since by part (i) the limiting density is decreasing rather than

constant.

Remark 2. Compare parts (iii) and (v) in Theorem 1 to part (iii) of The-

orem DH above.

For most of the rest of the regimes of qn, we suffice with the weak conver-

gence and don’t analyze the exceptional behavior in the corners. We next

consider qn = 1+ c
n , with c ∈ R−{0}, the range of qn for which the expected

number of inversions in a P
(qn)
n -distributed permutation is on the order n2,

as it is in the case of a uniformly random permutation, as seen in (1.5).

Theorem 2. Consider π1 under the measure P(1+ c
n
)

n , with c ∈ R−{0}. Then
π1
n converges in distribution to the distribution on [0, 1] with distribution

function

(1.6) Fc(x) =

x+ 1
c (e

cx − 1) log 1−e−c
1−e−cx , x ∈ [0, 1], if c > 0;

x+ 1
|c|(1− e

−|c|x) log e|c|−1
e|c|x−1 , x ∈ [0, 1], if c < 0,

and monotone decreasing density function

(1.7) fc(x) =

ecx log 1−e−c
1−e−cx , x ∈ (0, 1], if c > 0;

e−|c|x log e|c|−1
e|c|x−1 , x ∈ (0, 1], if c < 0.

Remark. Note that the advantage to smaller numbers still remains in the

limit even when q = 1 + c
n > 1, since the limiting density function is mono-

tone decreasing.

Now we consider qn = 1− c
nα , c > 0, the case that the expected number

of inversions in a P
(qn)
n -distributed permutation is on the order n1+α, as seen

in (1.5). The appropriate scaling order to obtain a limit in distribution is

now nα.

Theorem 3. Consider π1 under the measure P(1− c
nα

)
n , with c > 0 and

α ∈ (0, 1). Then π1
nα converges in distribution to the distribution on [0,∞)

with density ce−cx, that is, to the exponential distribution with parameter c.

The above theorem shows that in the regime qn = 1 − c
nα , π1 essentially

does not take on values on order above nα. The reduction in possible values
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for π1 becomes even more pronounced when we move to the case of constant

q ∈ (0, 1). Now a limiting distribution is obtained without any scaling.

Theorem 4. Consider π1 under the measure P(q)
n , with q ∈ (0, 1). Then

(1.8) lim
n→∞

P(q)
n (π1 = k) = (1− q)qk−1, k ∈ N.

That is, π1 converges in distribution to the geometric distribution with pa-

rameter 1− q.

Now we consider qn > 1 bounded with qn − 1 on order larger than O( 1
n).

In particular, this includes the case qn ≡ q > 1. By (1.5), for such regimes

one has E
(qn)
n In ∼ n2

2 . It turns out that for any such regime, there is weak

convergence to the uniform measure on [0, 1], as is the case under the uniform

distribution Punif
n on parking functions, as seen in Theorem DH.

Theorem 5. Consider π1 under the measure P(qn)
n with qn bounded and

0 < qn − 1 = ω( 1
n) (equivalently, 1

n = o(qn − 1)). Then π1
n converges in

distribution to the uniform distribution on [0, 1].

Also, for fixed q > 1,

(1.9)

P(q)
n (π1 = k) =

1

n
qk−1(q − 1)

n∑
j=k

1

qj − 1
, k = 1, 2, · · · , n;

P(q)
n (π1 = n− k) ∼ 1

n

(
1− 1

qk+1

)
, k = 0, 1, · · · .

Remark. Compare (1.9) to part (iii) of Theorem DH above.

We now turn to another statistic of parking functions. Define

(1.10) N
(n)
k (π) =

n∑
i=1

1k(πi), π ∈ PFn, k ∈ [n],

the number of times that k appears as an entry in π. This statistic was

studied briefly in [3]. Note that N
(n)
1 ≥ 1. It was shown there that under the

uniform measure Punif
n on PFn, the statistic N

(n)
1 converges in distribution

to X + 1, where X has the Poisson distribution with parameter one. Note

that N
(n)
n can only take on the values 0 or 1. It was noted in [3] that it is

easy to show that N
(n)
n converges in distribution to the Bernoulli distribution

with parameter 1
e . There don’t seem to be any results in the literature for

the limiting distribution of N
(n)
kn

under the uniform measure for any cases of
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kn besides kn ≡ 1 and kn = n. We study here the limiting distribution of

N
(n)
kn

under P(qn)
n for various regimes of {kn} and various regimes of {qn}.

Theorem 6. Consider N
(n)
k as in (1.10) under the measure P(qn)

n with

qn − 1 = O( 1
n).

i. For fixed k, limn→∞
N

(n)
k

logn
dist
= 1;

ii. For kn = θ(nα) with α ∈ (0, 1), limn→∞
N

(n)
kn

logn
dist
= 1− α;

iii. For kn ∼ dn, d ∈ (0, 1) and qn = 1 + c
n , c ∈ R, N

(n)
kn

converges in

distribution to the Poisson distribution with parameter λc given by

λc =


ecd log 1−e−c

1−e−cd , if c > 0;

ecd log ec−1
ecd−1 , if c < 0;

− log d, if c = 0.

iv. For kn satisfying n− kn = o(n), N
(n)
kn

converges in distribution to 0;

Remark. Note that the density in (1.7) from Theorem 2 is the same as the

parameter of the Poisson distribution in part (iii) of the Theorem 6.

Theorem 7. Consider N
(n)
k as in (1.10) under the measure P(q)

n with q < 1.

i. For fixed k, limn→∞
N

(n)
k
n

dist
= (1− q)qk−1;

ii. If limn→∞ nq
kn =∞, then limn→∞

N
(n)
kn

nqkn
dist
= 1−q

q .

iii. If L := limn→∞ nq
kn ∈ (0,∞), then N

(n)
kn

converges in distribution to

the Poisson distribution with parameter 1−q
q L;

iv. If limn→∞ nq
kn = 0, then limn→∞N

(n)
kn

dist
= 0;

Remark 1. In light of (1.8) in Theorem 4 and the exchangeability of the

measure P(q)
n , part (i) of Theorem 7 is a kind of weak law of large numbers

for the dependent random variables {1{πj=k}}∞j=1.

Remark 2. If kn ≤ a log n, with a < 1
| log q| , then (ii) holds, while if kn ≥

a log n, with a > 1
| log q| , then (iv) holds. In particular, a P(q)

n -random parking

function with q < 1 will most likely include no numbers of size larger than

a log n, if a > 1
| log q| , but it will include numbers of size at least a log n if

a < 1
| log q| .
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Theorem 8. Consider N
(n)
k as in (1.10) under the measure P(q)

n with q > 1.

i. For k fixed, N
(n)
k converges in distribution to the distribution of

∑∞
j=k Zj;k,

where {Zj;k}∞j=k are independent random variables and Zj;k has the Bernoulli

distribution with parameter (q−1)qk−1

qj−1 . The distribution is supported on Z+;

ii. For {kn}∞n=1 satisfying limn→∞ kn =∞ and limn→∞(n− kn) =∞, N
(n)
kn

converges in distribution to the distribution of
∑∞

i=0 Yi, where {Yi}∞i=0 are

independent and Yi has the Bernoulli distribution with parameter q−1
qi+1 . The

distribution is supported on Z+;

iii. For k fixed, N
(n)
n−k converges in distribution to the distribution of

∑k
i=0 Yi.

The distribution is supported on {0, 1, · · · , k + 1}.
iv.
∑∞

i=0 Yi
dist
= limk→∞

∑k
i=0 Yi

dist
= limk→∞

∑∞
j=k Zj;k. Thus,

lim
k→∞

lim
n→∞

N
(n)
n−k

dist
= lim

k→∞
lim
n→∞

N
(n)
k =

∞∑
i=0

Yi.

The above results suggest the following question.

Open Question. Asymptotically as n → ∞, are there regimes of {qn} for

which in total variation norm one has limn→∞ ||P(qn)
n − Punif

n ||TV < 1, and

if so, for what regimes is this limit minimized, and what is the value of the

minimum?

In light of Theorem DH and Theorems 1-5, it would seem that a minimum

less than one, if it exists, might occur at some fixed q > 1. (We note that it

is easy to show that for fixed n and q → ∞, P(q)
n converges in distribution

to the uniform measure on the set of permutations Sn ⊂ PFn. Thus, a

minimum less than one will certainly not occur for unbounded sequences of

{qn}.)
As noted in the paragraph before Theorem 6, under Punif

n , N
(n)
1 con-

verges in distribution to the distribution of X + 1, where X ∼ Pois(1), and

N
(n)
n converges in distribution to Ber(1e ). Using this with Theorem 8, we

can get lower bounds on limn→∞ ||P(q)
n − Punif

n ||TV, for q > 1, and thus

on infq>1 limn→∞ ||P(q)
n − Punif

n ||TV. We have limn→∞ Punif
n (N

(n)
1 = 1) =

P (X = 0) = e−1, and by part (i) of Theorem 8 with k = 1,

lim
n→∞

P(q)
n (N

(n)
1 = 1) =

∞∏
j=2

(
1− q − 1

qj − 1

)
=
q − 1

q
.
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And we have limn→∞ Punif
n (N

(n)
n = 1) = 1

e and by part (iii) of Theorem

8 with k = 0, limn→∞ P(q)
n (N

(n)
n = n) = q−1

q . Thus, when q = e
e−1 , the

limiting probabilities of the events {N (n)
1 = 1} and {N (n)

n = 1} under P(q)
n

and under Punif
n are all the same. Therefore, this information does not yield

a nontrivial lower bound on infq>1 limn→∞ ||P(q)
n −Punif

n ||TV. Now consider

the event {N (n)
1 = 2}. We have limn→∞ Punif

n (N
(n)
1 = 2) = P (X = 1) = e−1,

and by part (i) of Theorem 8 with k = 2,

lim
n→∞

P(q)
n (N

(n)
1 = 2) =

∞∑
l=2

P (Z1;l = 1, Z1;k = 0, k ∈ N− {1, l}) =

∞∑
l=2

q − 1

ql − q

∞∏
j=2

(
1− q − 1

qj − 1

)
=

(q − 1)2

q2

∞∑
l=1

1

ql − 1
.

So

lim inf
n→∞

||P(q)
n − Punif

n ||TV ≥

lim
n→∞

max
(
|P(q)
n (N (n)

n = 1)− Punif
n (N (n)

n = 1)|, |P(q)
n (N

(n)
1 = 2)− Punif

n (N
(n)
1 = 2)|

)
=

max

(∣∣∣∣q − 1

q
− 1

e

∣∣∣∣ ,
∣∣∣∣∣(q − 1)2

q2

∞∑
l=1

1

ql − 1
− 1

e

∣∣∣∣∣
)
.

Using a graphing calculator, we found that the right hand side above attains

its minimum value of approximately 0.058 at q ≈ 1.74. Thus,

inf
q>1

lim inf
n→∞

||P(q)
n − Punif

n ||TV ≥ 0.058.

We note that, in fact, we calculated explicitly

lim
n→∞

max
(
|P(q)
n (N (n)

n = 1)− Punif
n (N (n)

n = 1)|, |P(q)
n (N

(n)
1 ∈ A)− Punif

n (N
(n)
1 ∈ A)|

)
for all choices of A ⊂ {1, 2, 3, 4}. Denoting the limit by L(A, q), we found

that infq>1 L(A, q) was the smallest in the case of A = {2}.
It is intuitively clear, and not difficult to prove, that N

(n)
k is stochastically

decreasing in k under Punif
n . Thus, for any {kn}∞n=1, the limiting distribution

of N
(n)
kn

under Punif
n , if it exists, is stochastically dominated by the distri-

bution of X + 1 and stochastically dominates the distribution Ber(1e ). It

would be interesting to know the limiting distribution of N
(n)
kn

under Punif
n

for various choices of {kn}. Such information in conjunction with Theorems

6 and 8 might allow for larger lower bounds on limn→∞ ||P(qn)
n − Punif

n ||TV,

when qn > 1, in the spirit of the calculations made above.
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We end this section with a description of one of the motivations for the

construction of the family of distributions on PFn that appears in this paper.

This motivation comes from a rather parallel situation for partitions of an

integer. A partition λ = (λ1, · · · , λk) of n ∈ N is a non-increasing sequence of

positive integers, {λi}ki=1, for some k ∈ [n], satisfying
∑k

i=1 λi = n. Denote

by Λn the set of all partitions of n. The highly nontrivial asymptotic growth

rate of |Λn| was first proved by Hardy and Ramanujan in 1918; one has

|Λn| ∼ 1
4
√
3n
e
π
√

2n
3 . We are unaware of a natural way to simulate a uniformly

random partition from Λn. In order to study the probabilistic behavior of

uniformly random partitions, Fristedt in the beautiful paper [5] imbedded

the problem in a one-parameter family of probability measures on partitions

of random length, based on the generating function for partition functions.

However, there is a family of non-uniform probability measures on Λn

that arises very naturally via permutations, and thus is easy to simulate.

Any permutation σ ∈ Sn can be decomposed uniquely into the product

of disjoint cycles (in any order since the disjoint cycles commute). The

lengths of these disjoint cycles, listed in non-increasing order, constitute

a partition in Λn. (For example, the permutation σ = 62534187 ∈ S8 has

cycle decomposition σ = (435)(16)(78)(2), yielding the partition (3, 2, 2, 1) ∈
Λ8.) Consequently, any probability measure on Sn induces a probability

measure on Λn. Consider the family of Ewens sampling distributions, which

are defined by exponential tilting via the total-number-of-cycles statistic.

More precisely, let Dn(σ) denote the total number of disjoint cycles in σ ∈
Sn. For each θ ∈ (0,∞), define the probability measure Q

(θ)
n (σ) = θDn(σ)

θ(n)
,

for σ ∈ Sn, where the normalization constant θ(n) is the rising factorial,

θ(n) = θ(θ + 1) · · · (θ + n − 1). Of course, Q
(1)
n is the uniform distributions

on Sn. For θ > 1, the probability Q
(θ)
n favors permutations with many

cycles and for θ ∈ (0, 1) it favors permutations with few cycles. Let Q(θ)
n

denote the measure induced on Λn corresponding to the Ewens sampling

measure Q
(θ)
n on Sn. Natural permutation statistics, such as for example,

the total number of cycles, the number of cycles of length j and the length

of the longest cycle, translate into corresponding statistics for partitions—

the total number of components, the number of components of length j and

the size of the largest component. The asymptotic probabilistic behavior of
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these permutation statistics and others under Q
(θ)
n , and thus equivalently

these and other statistics for partitions under Q(θ)
n , can be found in the

fine book [1]. The measure itself, Q(θ)
n on Λn, properly scaled, converges to

a Poisson-Dirichlet distribution on the set of non-negative, non-decreasing

sequences that sum to one; see [1] and references therein. In contrast to the

situation in this paper with the parameter q, there is no reason to consider

the Ewens sampling distributions with parameter θ depending on n because

the expected value of the total number of cycles Dn is asymptotic to θ log n

under Q
(θ)
n ; thus, the order remains the same for all values of θ.

We note that with respect to the open question we posed above for parking

functions, in the case of partitions the total variation norm between the two

measures above converges to one, for all values of θ. This can be seen,

for example, by comparing Theorem 10.1 to equation (36) or by comparing

Theorem 10.2 to equation (37) in [6].

In section 2, we prove Proposition 1 and Theorems 1-5, and in section 3

we prove Theorems 6-8.

2. Proofs of Proposition 1 and Theorems 1-5

In this section we prove the results concerning π1. From (1.3), (1.4) and

the definition of P(q)
n , it follows that

(2.1) P(q)
n (π1 = k) =

 1
n

∑n
j=k

1−q
1−qj q

k−1, q ∈ (0,∞)− {1};
1
n

∑n
j=k

1
j , q = 1,

and consequently,

(2.2) P(q)
n (π1 ≤ k) =

 1
n

∑k
l=1

∑n
j=l

1−q
1−qj q

l−1, q ∈ (0,∞)− {1};
1
n

∑k
l=1

∑n
j=l

1
j , q = 1.

For q 6= 1, we have

k∑
l=1

n∑
j=l

1− q
1− qj

ql−1 =
k∑
j=1

j∑
l=1

1− q
1− qj

ql−1 +
n∑

j=k+1

k∑
l=1

1− q
1− qj

ql−1 =

k + (1− qk)
n∑

j=k+1

1

1− qj
.
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Similarly, for the case q = 1 we have

k∑
l=1

n∑
j=l

1

j
= k + k

n∑
j=k+1

1

j
.

Using this, we can rewrite (2.2) as

(2.3) P(q)
n (π1 ≤ k) =

 k
n + 1

n(1− qk)
∑n

j=k+1
1

1−qj , q ∈ (0,∞)− {1};
k
n + k

n

∑n
j=k+1

1
j , q = 1.

Using (2.3), we now prove Proposition 1 and Theorems 1-5.

Proof of Proposition 1. Fix 1 ≤ k < j ≤ n, and let

G(q) =


1−qk
1−qj , q ∈ (0,∞)− {1};
k
j , q = 1.

Note that G is continuous at q = 1. From (2.3), it suffices to show that G

is strictly decreasing. For q 6= 1, we have G′(q) = H(q)
(1−qj)2 , where H(q) =

−(1 − qj)kqk−1 + (1 − qk)jqj−1. We write H(q) = qk−1J(q), where J(q) =

−(j − k)qj + jqj−k − k. We have J(0) < 0 and limq→∞ J(q) = −∞. Also,

J ′(q) = −(j−k)jqj−1(1− q−k). Thus, J attains its maximum at q = 1, and

one has J(1) = 0; thus J(q) < 0, for q 6= 1. �

Proof of Theorem 1. From (2.3) with q = 1, we obtain for x ∈ (0, 1),

limn→∞ P(1)
n (π1n ≤ x) = x − x log x. This proves part (i). From (2.1) with

q = 1, we have

E(1)n π1 =
1

n

n∑
k=1

k

n∑
j=k

1

j
=

1

n

n∑
j=1

1

j

j∑
k=1

k =
1

2n

n∑
j=1

(j + 1) =

1

2n

(
1

2
n(n+ 1) + n

)
=
n+ 3

4
,

which proves part (ii). Parts (iii)-(v) follow immediately from (2.1) with

q = 1. �

Proof of Theorem 2. We’ll prove the case that qn = 1 + c
n with c > 0; the

case c < 0 is proved similarly. Let x ∈ (0, 1). From (2.3) we have

(2.4) P(1+ c
n
)

n (
π1
n
≤ x) =

[xn]

n
+

1

n

(
(1 +

c

n
)[xn] − 1

) n∑
j=[xn]+1

1

(1 + c
n)j − 1

.
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We have (1 + c
n)j ∼ e

cj
n , uniformly over j ∈ {[xn] + 1, · · · , n}. Using this

with (2.4), we have

(2.5) lim
n→∞

P(1+ c
n
)

n (
π1
n
≤ x) = x+ (ecx − 1)

∫ 1

x

1

ecy − 1
dy.

We have

(2.6)

∫ 1

x

1

ecy − 1
dy =

∫ 1

x

e−cy

1− e−cy
dy =

1

c
log(1−e−cy)|1x =

1

c
log

1− e−c

1− e−cx
.

Substituting (2.6) in (2.5) gives (1.6), and differentiating (1.6) gives (1.7).

We leave it to the reader to check that the density in (1.7) is monotone

decreasing. �

Proof of Theorem 3. Let x ∈ (0, 1). From (2.3) we have

(2.7)

P(1− c
nα

)
n (

π1
nα
≤ x) =

[xnα]

n
+

1

n

(
(1− (1− c

nα
)[xn

α]
) n∑
j=[xnα]+1

1

1− (1− c
nα )j

.

Since for any β ∈ (α, 1), limn→∞(1 − c
nα )j = 0, uniformly over j ∈ [nβ, n],

we have limn→∞
1
n

∑n
j=[xnα]+1

1
1−(1− c

nα
)j

= 1. Using this in (2.7), we obtain

lim
n→∞

P(1− c
nα

)
n (

π1
nα
≤ x) = 1− e−cx.

�

Proof of Theorem 4. From (2.1) we have for k ∈ N,

lim
n→∞

P(q)
n (π1 = k) = (1− q)qk−1.

�

Proof of Theorem 5. We first consider the case of fixed q > 1. Let x ∈ (0, 1).

From (2.3) we have

(2.8) P(q)
n (

π1
n
≤ x) =

[xn]

n
+

1

n
(q[xn] − 1)

n∑
j=[xn]+1

1

qj − 1
.

For sufficiently large n, depending on q, we have

1

n
(q[xn] − 1)

n∑
j=[xn]+1

1

qj − 1
≤ 2q[xn]

n

∞∑
j=[xn]+1

1

qj
=

2

(q − 1)n
.
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Using this with (2.8) gives

lim
n→∞

P(q)
n (

π1
n
≤ x) = x,

proving that π1
n converges in distribution to the uniform distribution on

[0, 1].

The first equation in (1.9) is (2.1). For the second equation in (1.9), we

have from (2.1),

P(q)
n (π1 = n− k) =

1

n
(q − 1)

k∑
i=0

qn−k−1

qn−k+i − 1
∼ 1

n
(q − 1)

k∑
i=0

(
1

q
)i+1 =

1

n
(q − 1)

1
q − (1q )k+2

1− 1
q

=
1

n

(
1− 1

qk+1

)
.

Now consider the general case that qn > 1 is bounded and qn− 1 = ω( 1
n).

Then it follows from Proposition 1 that for any fixed c > 1, for sufficiently

large n the distribution of π1 under P(1+ c
n
)

n is stochastically dominated by

the distribution of π1 under P(qn)
n . Since {π1n } is bounded, it is tight under

any sequence of distributions P(qn)
n . Letting n→∞ and using Theorem 2, it

follows that any limit point in distribution of {π1n } under P(qn)
n stochastically

dominates the distribution Fc in (1.6), for any c > 0. The term involving c

on the right hand side of (1.6) satisfies

1

c
(ecx − 1) log

1− e−c

1− e−cx
∼ 1

c
(ecx − 1)

(
−e−c + e−cx

) c→∞
→ 0 .

Thus, limc→∞ Fc(x) = x. We conclude that any limit point in distribution

of {π1n } under P(qn)
n stochastically dominates the uniform distribution on

[0, 1]. On the other hand, choose a fixed q > supn∈N qn. By the proof above

for the case of fixed q, along with Proposition 1, it follows that any limit

point in distribution of {π1n } under P(qn)
n is stochastically dominated by the

uniform distribution on [0, 1]. We thus conclude that the only limit point in

distribution of π1
n under P(qn)

n is the uniform distribution. Consequently, π1n
under P(qn)

n converges to the uniform distribution.

�

3. Proofs of Theorems 6-8

In this section we prove the results concerning the parking function statis-

tic N
(n)
k . From (1.3) and the definition of P(q)

n , it follows that N
(n)
k under



16 ROSS G. PINSKY

P(q)
n has the distribution of

∑n
j=k 1{Ĩn,<j=k}, where Ĩn,<j is as in (1.4) and

{Ĩn,<j}nj=1 are independent:

(3.1) N
(n)
k

dist
=

n∑
j=k

1{Ĩn,<j=k}.

Thus, the Laplace transform of N
(n)
k under P(q)

n is given by

(3.2)

E(q)n e−tN
(n)
k =


∏n
j=k

(
1− 1−q

1−qj q
k−1(1− e−t)

)
, t ≥ 0; q ∈ (0,∞)− {1};∏n

j=k

(
1− 1

j (1− e−t)
)
, t ≥ 0; q = 1.

Using (3.2), we now prove Theorems 6-8.

Proof of Theorem 6. The assumption on qn in parts (i), (ii) and (iv) of the

theorem, is that there exists a constant C > 0 such that 1− C
n ≤ qn ≤ 1+ C

n .

The assumption in part (iii) is that there exists a c ∈ R such that qn = 1+ c
n .

To avoid repeating similar types of analysis, we will prove all of the parts

under the assumption that qn = 1 + c
n , with c > 0. The extension to

the more general form for qn is easy to obtain from the analysis below for

qn = 1 + c
n , c > 0. From (3.2), we have

(3.3) E(1+
c
n
)

n e
−t

N
(n)
k

logn =

n∏
j=k

(
1− c

n

1

(1 + c
n)j − 1

(1 +
c

n
)k−1

(
1− e−

t
logn

))
.

We first consider part (i), where k is fixed. From the Taylor expansion,

we have

(1 +
c

n
)j − 1 =

jc

n
+
j(j − 1)

2

a2j,n
n2

, 0 < aj,n < c.

Thus,

c

n

1

(1 + c
n)j − 1

=
c

j
(
c+ j−1

2n a
2
j,n

) .
The expression above is uniformly bounded in j and n. Thus, we have

(3.4)

log

(
1− c

n

1

(1 + c
n)j − 1

(1 +
c

n
)k−1

(
1− e−

t
logn

))
∼ c

j
(
c+ j−1

2n a
2
j,n

) t

log n
,

uniformly over j ∈ {k, · · · , n} as n→∞.
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From (3.3) and (3.4), we have

(3.5) log E(1+
c
n
)

n e
−t

N
(n)
k

logn ∼ − t

log n

n∑
j=k

c

j
(
c+ j−1

2n a
2
j,n

) .
For any ε > 0, there exists a δε > 0 such that

(3.6) (1− ε)1

j
≤ c

j
(
c+ j−1

2n a
2
j,n

) ≤ 1

j
, j = k, · · · , [δεn].

From (3.6),

(3.7)

lim inf
n→∞

t

log n

[δεn]∑
j=k

c

j
(
c+ j−1

2n a
2
j,n

) ≥ (1− ε)t;

lim sup
n→∞

t

log n

[δεn]∑
j=k

c

j
(
c+ j−1

2n a
2
j,n

) ≤ t.
We also have

(3.8) lim sup
n→∞

t

log n

n∑
j=[δεn]+1

c

j
(
c+ j−1

2n a
2
j,n

) = 0, for all δε > 0.

From (3.5), (3.7) and (3.8), we conclude that E(1+
c
n
)

n e
−t

N
(n)
k

logn = e−t, and

consequently, by the uniqueness of the Laplace transform for nonnegative

distributions, part (i) follows.

We now consider part (ii), where kn = θ(nα). The analysis above up to

and including (3.6) holds with k replaced by kn. When we replace k by kn

in the lower limit in the two sums on the left hand side of (3.7), the right

hand sides get multiplied by 1− α. This proves part (ii).

We now consider part (iii) where kn ∼ dn with d ∈ (0, 1). Similar to

(3.3), we have

E(1+
c
n
)

n e
−tN(n)

[dn] =
n∏

j=[dn]

(
1− c

n

1

(1 + c
n)j − 1

(1 +
c

n
)[dn]−1

(
1− e−t

))
.
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Thus,

(3.9)

log E(1+
c
n
)

n e
−tN(n)

[dn] =

n∑
j=[dn]

log

(
1− c

n

1

(1 + c
n)j − 1

(1 +
c

n
)[dn]−1

(
1− e−t

))
∼

− c

n
ecd(1− e−t)

n∑
j=[dn]

1

e
cj
n − 1

∼ −cecd(1− e−t)
∫ 1

d

1

ecx − 1
dx.

From (3.9) and (2.6), we have

lim
n→∞

log E(1+
c
n
)

n e
−tN(n)

[dn] = −
(
ecd log

1− e−c

1− e−cd

)
(1− e−t).

Thus,

lim
n→∞

E(1+
c
n
)

n e
−tN(n)

[dn] = e
−
(
ecd log 1−e−c

1−e−cd

)
(1−e−t)

.

The right hand side above is the Laplace transform of the Poisson distribu-

tion with parameter ecd log 1−e−c
1−e−cd ; so N

(n)
[dn] converges to this Poisson distri-

bution.

We now consider part (iv) where kn satisfies n − kn = o(n). Write kn =

n− a(n) with a(n) = o(n). Then similar to (3.9), we have

(3.10)

log E(1+
c
n
)

n e−tN
(n)
kn =

n∑
j=n−an

log

(
1− c

n

1

(1 + c
n)j − 1

(1 +
c

n
)n−an−1

(
1− e−t

))
∼

− c

n
ec(1− e−t)

n∑
j=n−an

1

e
cj
n − 1

.

From (3.10), we conclude that limn→∞ log E(1+
c
n
)

n e−tN
(n)
kn = 0, and thus,

limn→∞ E
(1+ c

n
)

n e−tN
(n)
kn = 1. Therefore, N

(n)
kn

converges to zero in distribu-

tion. �

Proof of Theorem 7. We first consider part (i) where k is fixed. From (3.2),

we have

(3.11)

log E(q)n e−t
N

(n)
k
n =

n∑
j=k

log

(
1− 1− q

1− qj
qk−1(1− e−

t
n )

)
∼

− (1− q)qk−1 t
n

n∑
j=k

1

1− qj
.
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Thus, limn→∞ log E(q)n e−t
N

(n)
k
n = −(1− q)qk−1t, and

lim
n→∞

E(q)n e−t
N

(n)
k
n = e−(1−q)q

k−1t,

which proves that
N

(n)
k
n converges in distribution to (1− q)qk−1.

We now consider part (ii) where limn→∞ nq
kn =∞. Similar to (3.11), we

have

(3.12)

log E(q)n e
−t

N
(n)
kn

nqkn =
n∑

j=kn

log

(
1− 1− q

1− qj
qkn−1(1− e−

t

nqkn )

)
∼

− (1− q)qkn−1 t

nqkn

n∑
k=kn

1

1− qj
.

Since kn = o(n), it follows from (3.12) that limn→∞ log E(q)n e
−t

N
(n)
kn

nqkn = 1−q
q t,

and

lim
n→∞

E(q)n e
−t

N
(n)
kn

nqkn = e
− 1−q

q
t
,

which proves that
N

(n)
kn

nqkn
converges in distribution to 1−q

q .

We now consider parts (iii) and (iv) together. Thus, we assume that

limn→∞ nq
kn = L ∈ [0,∞). Then similar to (3.11) and (3.12), we have

(3.13)

log E(q)n e−tN
(n)
kn =

n∑
j=kn

log

(
1− 1− q

1− qj
qkn−1(1− e−t)

)
∼

− (1− q)qkn−1(1− e−t)
n∑

j=kn

1

1− qj
= −(1− q)nqkn−1(1− e−t) 1

n

n∑
j=kn

1

1− qj
.

Since kn = o(n), it follows from (3.13) that limn→∞ log E(q)n e−tN
(n)
kn = 1−q

q L(1−
e−t), and

(3.14) lim
n→∞

E(q)n e−tN
(n)
kn = e

− 1−q
q
L(1−e−t)

.

If L > 0, the right hand of (3.14) is the Laplace transform of the Poisson

distribution with parameter 1−q
q L; so N

(n)
kn

converges to this Poisson distri-

bution. If L = 0, then it follows from (3.14) that N
(n)
kn

converges to zero in

distribution.
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Proof of Theorem 8. We begin with part (i). By (3.1) and (1.4), it follows

that N
(n)
k converges in distribution to the distribution of

∑∞
j=k Zj;k, as in

the statement of the theorem. Since E
∑∞

j=k Zj:k =
∑∞

j=k
(q−1)qk−1

qj−1 <∞, it

follows that the support of
∑∞

j=k Zj;k is Z+.

We now turn to part (ii). By (3.1) and (1.4), we can write for any M ∈ N
and sufficiently large n,

N
(n)
k

dist
=

M∑
i=0

Zkn+i;kn +

n−kn∑
i=M+1

Zkn+i;kn := IM + IIM,n.

From the definition of Zkn+i;kn and Yi, clearly, IM converges in distribution

as n → ∞ to
∑M

i=0 Yi, where the random variables {Yi}∞i=0 are as in the

statement of the theorem. Also,

EIIM,n =

n−kn∑
i=M+1

(q − 1)qkn−1

qkn+i − 1
.

Thus, for sufficiently large n,

EIIM,n ≤ 2(q − 1)
∞∑

i=M+1

q−1−i = 2q−M .

Thus, limM→∞ lim supn→∞EIIM,n = 0. This completes the proof of part

(ii).

We now turn to part (iii). By (3.1) and (1.4), we can write

N
(n)
n−k

dist
=

k∑
i=0

Zn−i;n−k.

Thus, from the definition of Zn−i;n−k and Yk−i, clearly N
(n)
n−k converges in

distribution as n→∞ to
∑k

i=0 Yi.

For part (iv), we write
∑∞

j=k Zj;k =
∑∞

i=0 Zk+i;k and note that

limk→∞ Zk+i;k
dist
= Yi. �
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