A FAMILY OF NON-UNIFORM DISTRIBUTIONS ON THE
SET OF PARKING FUNCTIONS GENERATED BY
RANDOM PERMUTATIONS

ROSS G. PINSKY

ABSTRACT. We introduce a rather natural family of non-uniform dis-
tributions on PF,, n € N, the set of parking functions of length n. One
of the motivations for this comes from a similar situation in the context
of integer partitions. For a permutation o € S, and for j € [n], let
I,,,<;(0) denote the number of inversions in o that involve the number
j and a number less than j. Let I, <;(¢) = I, <;j(0) + 1. The map
(o,7) — (fn,<.,1 (o), 7I~n,<7n (O‘)) maps S, X S, onto PF,,. Consider
the family of distributions Pflq) X P, q € (0,00), on Sy X Sy, where P,
is the uniform distribution on S, and PT(Lq> is the Mallows distribution
with parameter g on S,,. The Mallows distributions are defined by expo-
nential tilting via the inversion statistic. For each ¢ > 0, the above map
along with the distribution P,iq) X P, induces an exchangeable distribu-
tion 77,@ on PF,,. We study the asymptotic behavior of two fundamental

statistics of parking functions under the family of distributions P,

1. INTRODUCTION AND STATEMENT OF RESULTS

In this paper, we introduce a rather natural family of non-uniform dis-
tributions on PF,, n € N, the set of parking functions of length n. One
of the motivations for this comes from a similar situation in the context of
A, n € N, the set of partitions of n, as will be described at the end of this
section. We begin by recalling the definition of a parking function. Consider
a row of n parking spaces on a one-way street. A line of n cars, numbered
from 1 to n, attempt to park, one at a time. The ith car’s preferred space

is spot number 7; € [n]. If this space is already taken, then car i proceeds
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forward and parks in the first available space, if one exists. If the car is un-
able to park, it exits the street. A sequence m = {m;}} is called a parking
function on [n] if all n cars are able to park. It is easy to see that 7 is a

parking function if and only if
(1.1) {i:m < j}| >4, forall j € [n].

It is well-known that |PF,| = (n + 1)"~!. There are a number of proofs
of this result; a particularly elegant one due to Pollack can be found in [4].
Parking functions are a fundamental combinatorial object; for a survey of
parking functions and their generalizations and some applications, see the
article by Yan [8].

One can consider random parking functions by placing the uniform proba-
bility measure on PF,,. A fundamental fact about a parking function is that
it remains a parking function after any permutation of its coordinates; thus,
the uniform measure on PF,, is exchangeable. A study of random parking
functions was initiated by Diaconis and Hicks in the fundamental paper [3],
where many interesting properties of random parking functions are proved;
see also the article by Bellin [2]. In this paper we consider a family of non-
uniform, exchangeable distributions on PF,, that arises naturally through
the inversion statistic for permutations.

Denote by S, the set of permutations of [n], and write in one-line notation
o =010, € 5,. Recall that the inversion statistic I, on .S, is defined by

In(O') = Z 1aj<ai = Z 10;1<Ui—1.

1<i<j<n 1<i<j<n
(Note that o} " is the position of k in 0.) For j € [n], let I, <;(c) denote
the number of inversions in ¢ that involve the number j and a number less
than j; that is, I <j(0) = Zl§i<j1
I, = Z?:1 I <.
For convenience, define I,, ; := I, <; + 1. We have

o7 l<or Of course I,, <1 = 0, and

(1.2) 1< I <j(0) <j, j€n],o €S,

Asis well known, the map that takes o € S, to the vector (in,<1(0'), ce I~n7<n(0)) €

[1]x---x[n] is a bijection. (The vector (fn7<1(0), e ,I~n7<n(a)> or an equiv-

alent variant is called the Lehmer code of the permutation.)
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In light of (1.2) and (1.1), it follows that

(1.3) (fn7<7-1 (), In<m, (0)> € PF,, for each pair (o,7) € S, X Sy.

Let P, denote the uniform probability measure on S,, and let Q,, be an
arbitrary probability measure on S,,. Then (1.3) and the probability measure
Q. x P, on S, x S, induce an exchangeable probability measure on PF,.
We will consider the probability measures Pr(Lq) X Py, q € (0,00), on Sy, X Sy,
where P,gq) is the Mallows measure with parameter g. The Mallows measures

are defined by exponential tilting via the inversion statistic. More precisely,

qIn(U)
PP(c) =*——, 0 €Sy, q€(0,00),
K,
where the normalization constant K, is given by K, = S )Y

1 (1—¢7)"
course, Pr(Ll) is the uniform distribution on S,,. For ¢ > 1, t}ie probability
R@ favors permutations with many inversions and for ¢ € (0,1) it favors
permutations with few inversions. A fundamental fact about Mallows dis-
tributions is that under P,(Lq) the random variables {I;, <;}_; are indepen-
dent with truncated geometric distributions starting at zero [7], and thus
{fn7<j }?:1 are independent with truncated geometric distributions starting

at one. More specifically, the distributions are given by

17quqi717 1= 17 7j7 qec <O7OO> - {1}7

(14)  PO(In<;=i)=14"'"
=1 g g=1

Let Py(lq) denote the probability measure on the set of parking functions
PF, that is induced by (1.3) and the measure PT(Lq) x P, on S, x S,. The
fact that {fn,<j }—, are independent with truncated geometric distributions
makes the analysis of certain statistics of parking functions under the mea-
sures 737(;1) quite accessible.

We note that it is easy to simulate a pair of quq) X Pj-random permuta-
tions. Thus, it is easy to simulate a Péq)—random parking function in PF,.
We are unaware of a natural way to simulate a uniformly random parking
function in PF,,.

We will consider the behavior of two fundamental statistics of PF,, that
are very amenable to analysis under the measures P,sq). Actually we will

allow ¢ to depend on n: ¢ = g,. The reason for this is that small changes
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in g, when ¢, is near 1 can have a dramatic influence on the asymptotic

(qn)

behavior of the measures P, "’ on permutations and in turn on the measures

737(1 n) on parking functions. To see this influence on permutations, we note

)

the following behavior of the inversion statistic under P,(lq" , which follows

1
from [7] along with the well-known fact that P,(Lq)(a) = Péq)(arev), where

the reversal 0™V of ¢ is defined by ¢"¥ = o001+ - 071.

n(n—1)

EWD —
4 )

n

_c 1
Eél ”)In ~ k;n? ¢ > 0,where k_ € (0, 1) is an explicit constant
e R
satisfying lg% k., = 7 Clggo k., =0;

. 14+«
E'ELl na)In ~

, c>0,a€(0,1);
(15) BYWI, ~ %qn, 0<qg<l
(1+2)

11
Ey I, ~ k‘jn2, ¢ > 0, where k" € (1, 5) is an explicit constant

1 1
satisfying lin% kf = 7 lim &k} = 3
c—

Cc— 00
. 2 1+«
R 2T ey b @)
c
(@) :n(nfl)_ 1
Bn, ="l Lo, g1,

We now turn to our results for the measures P,(Zq”). We first consider the
asymptotic behavior of the coordinate 7 in 7 = (7q,--- ,m,) under 73,(;1")
(by exchangeability, all of the coordinates m; have the same distribution).
In the notation, we suppress the dependence of m; on n. For comparison,
we first state the following theorem which encapsulates some results from

[3] in the case of the uniform distribution on parking functions.

Theorem DH (Diaconis-Hicks). Consider 71 under P2 the uniform mea-

sure on the set PF,, of parking functions of length n.
7L converges in the total variation norm to the uniform distribution on
[0,1];

i, &ty = 2 V2T55(1 4 o(1));

.
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iii. Let X be a random wvariable with the Borel distribution: P(X = j) =

L =1

e—]]j! , 7=1,2---. Then
i 1+ P(X >k
Pait(my = k) ~ +(n_) for fived k= 1,2,
PX<k+1)

,P;lmif(ﬂ_lzn_k)w , for fited k =0,1,2,--- .

n
In particular, P (ry = 1) ~ 2 and P (1) =n) ~ L.
Remark. From the definition of a parking function it is intuitively clear
that Puf(m; = j) is decreasing in j € [n]; a formal proof can be found in
[3]. The above theorem and its proof show that the probabilistic advantage
of smaller numbers disappears as n — 0o, except for a remnant that can be

seen in the “corners”.

Turning to the measure 7(,,q), we begin with a basic and useful fact.

Proposition 1. Let n > 2. The random variable w1 under Pr(Lq) 1s strictly

stochastically increasing in q; specifically, if ¢ < ¢”, then Péq/)(ﬂl > k) <
P (my > k), fork=2,-- ,n.

It is easy to see from the definition of P that 737(11)(7r1 = j) is decreasing
in j € [n]. And it is not hard to see intuitively from the construction that
this advantage to smaller numbers is stronger than it is in the case of the
uniform measure P on PF,. In light of Proposition 1, this advantage
becomes even more pronounced when ¢, < 1. For ¢, > 1, this advantage
begins to break down. All of this will be seen quantitatively in the theorems

below. We begin with the case ¢, = 1.

Theorem 1. Consider w1 under the measure 7%(11)'

i. L converges in distribution to the distribution on [0, 1] with density

—logz, = € (0,1];
i, €m = nd3;

iii. PT(Ll)(m =ky) ~ 280 for 1 <k, = o(n);

n

. Pf(Ll)(m =ky) ~ =84 for ky ~dn, d e (0,1);

n

v. 737(11)(771 =n—kyp)~ 1:#, for 0 <k, =o(n).

Remark 1. Unlike in the case of the uniform measure on parking functions,

in the case of the measure 737(11), the advantage to smaller numbers remains
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in the limit since by part (i) the limiting density is decreasing rather than
constant.
Remark 2. Compare parts (iii) and (v) in Theorem 1 to part (iii) of The-

orem DH above.

For most of the rest of the regimes of ¢,, we suffice with the weak conver-
gence and don’t analyze the exceptional behavior in the corners. We next
consider g, = 1+ %, with ¢ € R—{0}, the range of g,, for which the expected
)

number of inversions in a P,(Lq" -distributed permutation is on the order n?,

as it is in the case of a uniformly random permutation, as seen in (1.5).

Theorem 2. Consider w1 under the measure P,SH%), with ¢ € R—{0}. Then

% converges in distribution to the distribution on [0,1] with distribution
function
16 R = z+ L —Dlog =<5, z € [0,1], if ¢ > 0;
. . _
v (1= e ) log iy, v € [0,1), i e <0,

and monotone decreasing density function

e@log =4, x € (0,1], if ¢ > 0;
el 1og : —, 2z €(0,1], ifc<0.

|c\x_1 ’

Remark. Note that the advantage to smaller numbers still remains in the
limit even when ¢ =1+ - > 1, since the limiting density function is mono-

tone decreasing.

Now we consider ¢, =1 — -5, ¢ > 0, the case that the expected number

(qn)

of inversions in a Py’ -distributed permutation is on the order n!*?, as seen
n (1.5). The appropriate scaling order to obtain a limit in distribution is

now n¢.

Theorem 3. Consider w1 under the measure 777217”7), with ¢ > 0 and

€ (0,1). Then 7% converges in distribution to the distribution on [0, 00)

with density ce™“*, that is, to the exponential distribution with parameter c.

The above theorem shows that in the regime ¢, = 1 — 1 essentially

noz?

does not take on values on order above n®. The reduction in possible values
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for w1 becomes even more pronounced when we move to the case of constant

q € (0,1). Now a limiting distribution is obtained without any scaling.

Theorem 4. Consider m under the measure 7({1), with g € (0,1). Then

(1.8) lim PO (m = k)= (1—q)d* !, keN.

n—oo
That is, m converges in distribution to the geometric distribution with pa-

rameter 1 — q.

1
n

Now we consider g, > 1 bounded with ¢, — 1 on order larger than O(=).
In particular, this includes the case ¢, = ¢ > 1. By (1.5), for such regimes
one has E,gq")ln ~ %2 It turns out that for any such regime, there is weak
convergence to the uniform measure on [0, 1], as is the case under the uniform

distribution P}lmif on parking functions, as seen in Theorem DH.

Theorem 5. Consider m under the measure 7772%) with g, bounded and

0 < gn—1=w() (equivalently, + = o(g, —1)). Then ZL converges in

n
distribution to the uniform distribution on [0, 1].
Also, for fized g > 1,

_ 1
7)7(1‘1)(71-1_]{/-)—7(]]“ 1((]* )Z -7—1’ k 1)27' y 15
(1.9) =k
Pl —n—@~171— ! k=0,1
n \T1 = n k1 ) ) Ly

Remark. Compare (1.9) to part (iii) of Theorem DH above.

We now turn to another statistic of parking functions. Define

n
(1.10) N (r) = 3" 1k(m), w e PE,, ke,
i=1

the number of times that k appears as an entry in 7. This statistic was
studied briefly in [3]. Note that V- 1(n) > 1. It was shown there that under the
uniform measure P on PF,, the statistic Nl(n) converges in distribution
to X + 1, where X has the Poisson distribution with parameter one. Note
that N can only take on the values 0 or 1. It was noted in [3] that it is
easy to show that NT(L") converges in distribution to the Bernoulli distribution
with parameter % There don’t seem to be any results in the literature for

the limiting distribution of NN, ,E:) under the uniform measure for any cases of
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k. besides k, = 1 and k, = n. We study here the limiting distribution of

N, ,E:) under Py for various regimes of {k,} and various regimes of {¢,}.

Theorem 6. Consider N,gn) as in (1.10) under the measure 77% ") with
gn — 1= O(l)

n

. . N{™ dist

i. For fixed k, lim,_, o % =1;
.. . . N dist
ii. For ky = 0(n®) with o € (0, 1), limy, 00 % =1—a;

iti. For k, ~ dn, d € (0,1) and g, = 1+ 2, ¢ € R, NIE:) converges in

distribution to the Poisson distribution with parameter \. given by

e“dlog f:::cd, if ¢ > 0;

Ae = 4 e“log :;:11, if c < 0;

—logd, if c=0.
iv. For ky, satisfying n — k, = o(n), N,g:) converges in distribution to 0;

Remark. Note that the density in (1.7) from Theorem 2 is the same as the

parameter of the Poisson distribution in part (iii) of the Theorem 6.

Theorem 7. Consider N,E,n) as in (1.10) under the measure P with g <l
N dist
k e
n - (

1—q)¢"1;
N(”)

i. For fized k, lim,, oo

dist 1—q

kn — kn
ngkn q

. If lim, oo ng o0, then lim, oo

i, If L = lim, 0o ng* € (0,00), then N]E:) converges in distribution to

the Poisson distribution with parameter %L;

Remark 1. In light of (1.8) in Theorem 4 and the exchangeability of the

measure P,(Lq), part (i) of Theorem 7 is a kind of weak law of large numbers

for the dependent random variables {1 {ﬂj:k}};?il.

Remark 2. If k, < alogn, with a < Ilo—lgql then (ii) holds, while if k, >
(9)

alogn, with a > then (iv) holds. In particular, a Pp,"’-random parking

1
[log g’
function with ¢ < 1 will most likely include no numbers of size larger than

1

Togq]” but it will include numbers of size at least alogn if

alogn, if a >

1
@ < Togq"
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Theorem 8. Consider N,gn) as in (1.10) under the measure 737({1) with ¢ > 1.

i. Fork fized, N,gn) converges in distribution to the distribution of Z;’ik Zjiks
where {Zj;k}]o-‘;k are independent random variables and Zj.;, has the Bernoulli

(g=1)g" !
q

distribution with parameter . The distribution is supported on Z™;

i1
ii. For {kn}22 satisfying limy, oo kyy = 00 and limy, oo (n — ky,) = 00, N,g:)
converges in distribution to the distribution of Y ;2 Yi, where {Y;}2, are
independent and Y; has the Bernoulli distribution with parameter ;ﬂ%. The
distribution is supported on ZT;

i, For k fized, Nfﬁ)k converges in distribution to the distribution of Zf:o Y.

The distribution is supported on {0,1,---  k+ 1}.

. 00 dist . k dist ;. 00
w. Y 20 Ys = limp o Y o Ys = limpyoo Zj:k Zjk- Thus,

o0

. (n) dist 1. 1. (n) :

Jim, Jim N, = Jim Jim, N =3 Y

=
The above results suggest the following question.

Open Question. Asymptotically as n — oo, are there regimes of {g,} for
which in total variation norm one has lim, . H'Pq(zq") — Puif||py < 1, and
if so, for what regimes is this limit minimized, and what is the value of the

minimum?

In light of Theorem DH and Theorems 1-5, it would seem that a minimum
less than one, if it exists, might occur at some fixed ¢ > 1. (We note that it
is easy to show that for fixed n and ¢ — oo, 77,({1) converges in distribution
to the uniform measure on the set of permutations S, C PF,. Thus, a
minimum less than one will certainly not occur for unbounded sequences of
{aa})

As noted in the paragraph before Theorem 6, under P2, Nl(n) con-
verges in distribution to the distribution of X + 1, where X ~ Pois(1), and
N converges in distribution to Ber(1). Using this with Theorem 8, we
can get lower bounds on lim, HP?sq) — Puwif||y, for ¢ > 1, and thus
on infgsq limy, e HPﬁbq) — Punifj |y, We have limy, o P;lmif(Nl(n) =1) =

P(X =0) = e~ !, and by part (i) of Theorem 8 with k = 1,

lim 7)7(;1)(N1(”):1):H<1 q_l) )

n— 00 qj —1 q

Jj=2
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And we have lim,,_, P;;nif(Ny(zn) = 1) = % and by part (iii) of Theorem
8 with k = 0, limy oo PV (NN = n) = 221 Thus, when ¢ = %, the
limiting probabilities of the events {Nl(n) = 1} and {N,(Ln) = 1} under 2
and under P,‘Imif are all the same. Therefore, this information does not yield
a nontrivial lower bound on infysq lim,, e ||737sq) — Punif] |1y, Now consider
the event {N{") = 2}. We have lim,_,o PN =2) = P(X = 1) = ¢,
and by part (i) of Theorem 8 with k = 2,
o0
lim PN =2) =Y P(Ziy=1,Z1p =0,k eN—{1,1}) =

n—00
=2

o0 o0 o.¢]

-1 —1 —1)? 1
S A (- 421) - S
=4 4 ¢ —1 q q¢—1

j=2 =1

So

lilginf [Pl — punif|| 1 >

lim max ([PLY(NE = 1) = PN = 1)L [P = 2) - PN = 2)]) =

n—oo
@—1?53 1 1
q? ¢—-1 el

<q—1 1
max | |[—— — —
=1
Using a graphing calculator, we found that the right hand side above attains

I

q e

its minimum value of approximately 0.058 at ¢ ~ 1.74. Thus,

: - (¢) _ punif >
;gfl hnrgloréf PR = Pp™ [Ty > 0.058.

We note that, in fact, we calculated explicitly

lim masx ([P (N = 1) = PN = 1)[, [P (N € 4) = PRI € 4)))

n—o0

for all choices of A C {1,2,3,4}. Denoting the limit by L(A,q), we found
that inf,~q L(A, ¢) was the smallest in the case of A = {2}.

It is intuitively clear, and not difficult to prove, that V. ,En) is stochastically
decreasing in k under P, Thus, for any {k,}°%;, the limiting distribution
of N,g:) under P}lmif, if it exists, is stochastically dominated by the distri-
bution of X + 1 and stochastically dominates the distribution Ber(1). It
would be interesting to know the limiting distribution of N, ,g:) under Punif
for various choices of {k,}. Such information in conjunction with Theorems
6 and 8 might allow for larger lower bounds on lim,_, HP,SL " Punif| | py,

when ¢, > 1, in the spirit of the calculations made above.
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We end this section with a description of one of the motivations for the
construction of the family of distributions on PF}, that appears in this paper.
This motivation comes from a rather parallel situation for partitions of an
integer. A partition A = (A1, -+, \x) of n € Nis a non-increasing sequence of
positive integers, {\;}%_,, for some k € [n], satisfying Zle A; = n. Denote
by A, the set of all partitions of n. The highly nontrivial asymptotic growth

rate of |A,| was first proved by Hardy and Ramanujan in 1918; one has

|| ~ ﬁew & We are unaware of a natural way to simulate a uniformly
random partition from A,,. In order to study the probabilistic behavior of
uniformly random partitions, Fristedt in the beautiful paper [5] imbedded
the problem in a one-parameter family of probability measures on partitions
of random length, based on the generating function for partition functions.

However, there is a family of non-uniform probability measures on A,
that arises very naturally via permutations, and thus is easy to simulate.
Any permutation o € S,, can be decomposed uniquely into the product
of disjoint cycles (in any order since the disjoint cycles commute). The
lengths of these disjoint cycles, listed in non-increasing order, constitute
a partition in A,. (For example, the permutation o = 62534187 € Sg has
cycle decomposition o = (435)(16)(78)(2), yielding the partition (3,2,2,1) €
Ag.) Consequently, any probability measure on S, induces a probability
measure on A,. Consider the family of Ewens sampling distributions, which
are defined by exponential tilting via the total-number-of-cycles statistic.
More precisely, let D, (o) denote the total number of disjoint cycles in o €
Sp. For each 6 € (0,00), define the probability measure Q;e) (o) = %,
for o0 € S, where the normalization constant (™ is the rising factorial,
) =00 +1)---(f +n—1). Of course, Qg) is the uniform distributions
on S,. For # > 1, the probability Qg)) favors permutations with many
cycles and for 6 € (0,1) it favors permutations with few cycles. Let Qf(f)
denote the measure induced on A, corresponding to the Ewens sampling
measure Q,(f) on S,. Natural permutation statistics, such as for example,
the total number of cycles, the number of cycles of length j and the length
of the longest cycle, translate into corresponding statistics for partitions—
the total number of components, the number of components of length j and

the size of the largest component. The asymptotic probabilistic behavior of
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these permutation statistics and others under lee), and thus equivalently
these and other statistics for partitions under lee), can be found in the
fine book [1]. The measure itself, ng) on A,, properly scaled, converges to
a Poisson-Dirichlet distribution on the set of non-negative, non-decreasing
sequences that sum to one; see [1] and references therein. In contrast to the
situation in this paper with the parameter ¢, there is no reason to consider
the Ewens sampling distributions with parameter 8 depending on n because
the expected value of the total number of cycles D,, is asymptotic to 8logn
under Q%e); thus, the order remains the same for all values of 6.

We note that with respect to the open question we posed above for parking
functions, in the case of partitions the total variation norm between the two
measures above converges to one, for all values of #. This can be seen,
for example, by comparing Theorem 10.1 to equation (36) or by comparing
Theorem 10.2 to equation (37) in [6].

In section 2, we prove Proposition 1 and Theorems 1-5, and in section 3

we prove Theorems 6-8.

2. PROOFS OF PROPOSITION 1 AND THEOREMS 1-5

In this section we prove the results concerning m;. From (1.3), (1.4) and
the definition of 777(;1), it follows that

s 1-q k-1 _ .
1) PO — k)= 7okt o 4€ o0 T

1 n 1 _
EZ]’:]{}; q_17

and consequently,

k 1— —
i1 g i Y a € (0,00) = {1}

(22)  PP(m<k)={"T) X
7 2al=1 2=l jra=1

For ¢ # 1, we have
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Similarly, for the case ¢ = 1 we have

Using this, we can rewrite (2.2) as

=" Y = g€ (0,00) — {1}
k| k 1

nt HZ?:I@H 5 a=1

Using (2.3), we now prove Proposition 1 and Theorems 1-5.

(2.3) PW(r <k)=

Proof of Proposition 1. Fix 1 <k < j <n, and let

Clg) = i 4> 4 € (0,00) — {1}
=t

Note that G is continuous at ¢ = 1. From (2.3), it suffices to show that G
(1_(J))2, where H(q) =
—(1 = kg1 + (1 — ¢*)jg? 1. We write H(q) = ¢""1J(q), where J(q) =
—(j — k)¢’ + j¢oF — k. We have J(0) < 0 and limq_>OO J(q) = —oo. Also,
J'(q) = —(j— k)it (1 — ¢ *%). Thus, J attains its maximum at ¢ = 1, and
one has J(1) = 0; thus J(¢) <0, for ¢ # 1. O

is strictly decreasing. For ¢ # 1, we have G'(q) =

Proof of Theorem 1. From (2.3) with ¢ = 1, we obtain for z € (0,1),
limy, 00 737(})(% < z) =z — xlogz. This proves part (i). From (2.1) with

q = 1, we have

k=1 j=k Jj= k=1 7j=1
! ) +
— n
2n
which proves part (ii). Parts (iii)-(v) follow immediately from (2.1) with
q = 1_ D

Proof of Theorem 2. We'll prove the case that g, = 1+ & with ¢ > 0; the
case ¢ < 0 is proved similarly. Let « € (0,1). From (2.3) we have

(1+£),m [l’n] 1 [xn] i 1
) (<) = 22 -
24) Po <2y = SR 4~ (14 0) 1)'%1(1+ T
j=lxn
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We have (1 + £)7 ~ e uniformly over j € {[zn] + 1,--- ,n}. Using this
with (2.4), we have

1
. 1+<) 7 1
(2.5) nlgrolopé ")(# <z)=x+ (e — 1)/ o 1dy.
xX
We have
1 1 — _
1 e~ 1 _ 1 1 1—e¢
(26) /I\ ooy _ 1dy = /x md’y = E log(l—e Cy)‘x = E lOg m

Substituting (2.6) in (2.5) gives (1.6), and differentiating (1.6) gives (1.7).
We leave it to the reader to check that the density in (1.7) is monotone

decreasing. O

Proof of Theorem 3. Let x € (0,1). From (2.3) we have

(2.7)
e B (R T s
" ne — n n ne . 1—(1—;5)7
j=lzn]+1 n
Since for any 8 € (a,1), limp00(1 — -5)7 = 0, uniformly over j € [nf,n],
we have lim,, .o % E?:[xn“}—i—l ﬁ = 1. Using this in (2.7), we obtain
lim PUT A (ML < gy = e,
n— 00 n¢
Il
Proof of Theorem 4. From (2.1) we have for k € N,
lim P9 (m = k) = (1 —q)¢" .
n—oo
Il

Proof of Theorem 5. We first consider the case of fixed ¢ > 1. Let z € (0, 1).

From (2.3) we have

1 " 1

2. (@) (ML :M (gl 1 ‘ )

ey ARG En=SR e o) 3 o
Jj=lxn

For sufficiently large n, depending on ¢, we have

n o0

1 1 2zl 1 2
S (o lan] < q L _ s
R I e e S R T

j=[zn]+1 j=[zn]+1
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Using this with (2.8) gives

1 (9) -
im P, (n x) =z,

n—oo
proving that 7L converges in distribution to the uniform distribution on
[0,1].
The first equation in (1.9) is (2.1). For the second equation in (1.9), we
have from (2.1),

) 1 k qn k—1 k 1 L
Péq(ﬂlzn—k)zﬁ(q—l) P q—lzgﬁ =
=0 i=0
1 (1ykt2
1 i~ @) 1 1
5(4—1)71_% = 1_qk+1 :

Now consider the general case that ¢, > 1 is bounded and ¢, — 1 = w(%)
Then it follows from Proposition 1 that for any fixed ¢ > 1, for sufficiently
large n the distribution of 71 under PSJF%) is stochastically dominated by
the distribution of 7; under P(q”) Since {7} is bounded, it is tight under
any sequence of distributions 7372 n), Letting n — oo and using Theorem 2, it
follows that any limit point in distribution of {71} under P,s ) stochastically
dominates the distribution F; in (1.6), for any ¢ > 0. The term involving ¢
on the right hand side of (1.6) satisfies

%(ecx —1)log % ~ %(ew —1) (e +e ) =9,
Thus, lim. o Fr(x) = x. We conclude that any limit point in distribution
of {71} under plan) stochastically dominates the uniform distribution on
[0,1]. On the other hand, choose a fixed ¢ > sup, ey ¢n. By the proof above
for the case of fixed ¢, along with Proposition 1, it follows that any limit
point in distribution of {71} under 7772 ") s stochastically dominated by the
uniform distribution on [0, 1]. We thus conclude that the only limit point in
distribution of 71 under P(q”) is the uniform distribution. Consequently, 7%

under 'P(qn) converges to the uniform distribution.

3. PROOFS OF THEOREMS 6-8

In this section we prove the results concerning the parking function statis-
tic IV, Ign). From (1.3) and the definition of 737(1(1), it follows that N,En) under
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P9 has the distribution of D ik L, =k where I, <; is as in (1.4) and

{1: n,<j }?:1 are independent:

n) dist -
(3.1) N 1y
j=k

Thus, the Laplace transform of IV, IE ") under P(Q) is given by
(3.2)

woo T (1= 454" 1@ = o)) #2105 g € (0,00) — {1):

gla)—t
H?:k (1_7(1_6_t))7 t>0; ¢g=1.

n

Using (3.2), we now prove Theorems 6-8.

Proof of Theorem 6. The assumption on g, in parts (i), (ii) and (iv) of the
theorem, is that there exists a constant C' > 0 such that 1 — = < gn <1 —|— =
The assumption in part (iii) is that there exists a ¢ € R such that qn =1+
To avoid repeating similar types of analysis, we will prove all of the parts
under the assumption that ¢, = 1+ =, with ¢ > 0. The extension to
the more general form for g, is easy to obtain from the analysis below for

n=1+%, ¢>0. From (3.2), we have
(n) n
(1+) %_ C 1 _ﬁ
0 &t [ (1= Sy (- ).
]:

We first consider part (i), where k is fixed. From the Taylor expansion,

we have

,n
]2 , 0<ajn, <c

Thus,

)
—

c
el v )

n(l+z) -1 ]<C+]2n Jn)
The expression above is uniformly bounded in j and n. Thus, we have
(3.4)

c 1 —_t c t
og(1-5——— @1 (1f lon) ~ :
og( n(1+%)1—1( + ) © ) <C+112>10gn

2n ]n

uniformly over j € {k,--- ,n} as n — oc.
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From (3.3) and (3.4), we have

(1+£) ,tﬂ t — c
(3.5) log&, ™e “Ten ~ 1 — .
o8 5 j (e + Ga,,)
For any € > 0, there exists a d. > 0 such that
1 c 1
(3.6) (1—¢)-< 1 <=, j=k,-,[0n]
J ( + 2n jn) J
From (3.6),
t Ben)] c
lim inf ] > (1 —e)t;
(3.7 o
lim sup Z <t.

00 lognj ( +g 1 jgn)

We also have

n
C

(3.8) lim sup =0, for all 6. > 0.

—1
n—oo lOgn il ] <c+ = §n>

(n)
From (3.5), (3.7) and (3.8), we conclude that 5(1+ Ve~

consequently, by the uniqueness of the Laplace transform for nonnegative

Mogn = e , and

distributions, part (i) follows.

We now consider part (ii), where k, = 6(n®). The analysis above up to
and including (3.6) holds with k replaced by k,. When we replace k by k,
in the lower limit in the two sums on the left hand side of (3.7), the right
hand sides get multiplied by 1 — «. This proves part (ii).

We now consider part (iii) where k, ~ dn with d € (0,1). Similar to
(3.3), we have

(1+3) *tN[(:rf] _ E; Cldn)—1 (1 _ —t
En H . )]_1(1+n) (1—ef)).
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Thus,
(3.9)

(+2) - _c 1 CNldnl=1 (1 _ oty )
log &n Zlog(l nre )3_1(1+n) (1—e ))

J=ldn]

n

C cd —t 1 cd —t ! 1
- e (1—e )Z = ~—ce“(l—e) ; ecm_ldm.

j=fan) €™ —1

From (3.9) and (2.6), we have

. (1+2) N 1—e¢ _
nlggo log&, ™e "l = — <eCd log [ (1—e).
Thus,
e S )
n—o0

The right hand side above is the Laplace transform of the Poisson distribu-

tion with parameter e log - Cd, so N [(d )] converges to this Poisson distri-
bution.
We now consider part (iv) where k, satisfies n — k, = o(n). Write k,, =

n — a(n) with a(n) = o(n). Then similar to (3.9), we have

(3.10)
n
(1+%) 7tN(n) _ c 1 C n—an—1 —t
J=n—an
c " 1
- ﬁec(l —eh Z =
j=n—an, €™ — 1

< (n)
From (3.10), we conclude that lim,,_,~ log E,SH")e*tNkn
< (n)

limy, 00 Sy(LH n )eftNkn

tion. O

= 0, and thus,

= 1. Therefore, N,E:) converges to zero in distribu-

Proof of Theorem 7. We first consider part (i) where k is fixed. From (3.2),

we have
e h))

N(n)

log 5 Z log (

- (1-q)q"" 1tz !

— gl
Jqu

(3.11)
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(")
Thus, lim,, . log e 7 = —(1—¢q)¢"* ¢, and
(n)
lim £We~ 17— e~ (1-0d" 't
n— oo

N(") E—1

which proves that converges in distribution to (1 — ¢)gq

We now consider part (ii) where lim,, o, n¢*» = co. Similar to (3.11), we

have
( t
q _ —__t
log Ve o — Z 10g< L g1 — ¢ nafn )) ~
(3.12) J=hn
(g Z :
L 2T
ngn)
Since k, = o(n), it follows from (3.12) that limy,_,o log &7 ' nofn = -4t
and
(")
1—
lim 5( Ve~ "q’“" = equt,
n—o0

which proves that —2 converges in distribution to 1=4.
ngvn

We now consider parts (iii) and (iv) together. Thus, we assume that
lim,, 00 ng* = L € [0,00). Then similar to (3.11) and (3.12), we have
(3.13)
log&(ﬂ)e_t Z log <1 q k"_l(l e_t)> ~

J=kn

n

1 & 1
_ 1_ kn— 1 _ kn—1 e A _
(1—q)q . (1 =g)ng™ (1 —e)~ E T
]:kn J=kn

(n)
Since ky, = o(n), it follows from (3.13) that lim,,_,~ log glD) g tNy, — %L(l—
e t), and

(3.14) lim £9e —tNy) e~ L=,

n—oo

If L > 0, the right hand of (3.14) is the Laplace transform of the Poisson
n)

distribution with parameter %L; SO N,gn converges to this Poisson distri-
bution. If L = 0, then it follows from (3.14) that IV, ,g:) converges to zero in

distribution.
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Proof of Theorem 8. We begin with part (i). By (3.1) and (1.4), it follows
that N,En) converges in distribution to the distribution of Zj‘;k Zj.k, as in
the statement of the theorem. Since B} 227, Zjy, = > 72, % < 00, it
follows that the support of Z;‘;k Zjy is LT,

We now turn to part (ii). By (3.1) and (1.4), we can write for any M € N
and sufficiently large n,

n—=kn

) dist
SE:aWHM+ D Zhtikn = In + .
i=M+1

From the definition of Zj, .1, and Y, clearly, Ips converges in distribution
as n — oo to Zf‘iOYu where the random variables {Y;}°, are as in the

statement of the theorem. Also,

n—kn En—1
q—1)g"™
Ellyn= Y. (mﬁz;l-
i=M+1 q

Thus, for sufficiently large n,

o0
Elly, <2(g—1) Z g =2 M,
i=M+1

Thus, limy/—o0 limsup,, o, £1Ipr,, = 0. This completes the proof of part
(ii).

We now turn to part (iii). By (3.1) and (1.4), we can write
dis k
ist

Thus, from the definition of Z,_;,_\ and Yj_;, clearly N, (n )k converges in
distribution as n — oo to ZZ 0 Yi.

For part (iv), we write 372, Z;x = > 2% Zj1i and note that

dist
limg 00 Zkvik = Vi O
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