MEAN AND VARIANCE OF THE LONGEST
ALTERNATING SUBSEQUENCE IN A RANDOM
SEPARABLE PERMUTATION

ROSS G. PINSKY

ABSTRACT. A permutation is separable if it can be obtained from the
singleton permutation by iterating direct sums and skew sums. Equiv-
alently, it is separable if and only it avoids the patterns 2413 and 3142.
Under the uniform probability on separable permutations of [n], let the
random variable A, denote the length of the longest alternating sub-
sequence. Also, let A~ denote the length of the longest alternating
subsequence that begins with an ascent and ends with a descent, and
define A,;"", A" A~ similarly. By symmetry, the first two and the
last two of these latter four random variables are equi-distributed. We
prove that the expected value of any of these five random variables be-
haves asymptotically as (2 —v/2)n ~ 0.5858 n. We also obtain the more
refined estimates that the expected value of A}~ and of A,,"" is equal
to (2—v2)n — 2(3 —2v/2) + o(1) and that the expected value of A"
and of A, is equal to (2—v/2)n+ 2(3—2v/2) +o(1). Finally, we show
that the variance of any of the four random variables AF'% behaves

asymptotically as 20=11v2p ~ 0.2218 7.

1. INTRODUCTION AND STATEMENT OF RESULTS

Let S,, denote the permutations of [n] := {1,--- ,n}. Given o € Sy and

T € 8}, the direct sum of o and 7 is the permutation in Sy, given by
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2 ROSS G. PINSKY
and the skew sum o & 7 is the permutation in Si1; given by

o(i)+1l, i=1,---,k;
T(i—k), i=k+1,---k+1.

(cor)(i)=

A permutation is indecomposable if it cannot be represented as the direct sum
of two nonempty permutations and is skew indecomposable if it cannot be
represented as the skew sum of two nonempty permutations. A permutation
is separable if it can be obtained from the singleton permutation by iterating
direct sums and skew sums. Equivalently, a permutation is separable if
it can be successively decomposed and skew decomposed until all of the
indecomposable and skew indecomposable pieces of the permutation are
singletons. For example, using one-line notation, consider the separable
permutation 4352167. It can be decomposed into 43521 & 12. Then 43521
can be skew decomposed into 213621 and 12 can be decomposed into 1 @ 1.
Now 213 can be decomposed into 2161 and 21 can be skew decomposed into
161. Finally, again 21 can be skew decomposed into 1&1.

It is well-known [3] that a permutation is separable if and only it avoids
the patterns 2413 and 3142. For more on pattern avoiding permutations, see
for example [2]. The fact that separable permutations can be enumerated by
a closed form generating function (see section 2) makes them rather tractable
to analyze. The study of general pattern avoiding permutations goes back
to Knuth’s observation [7] that a permutation is so-called stack sortable if
and only if it 231-avoiding. Similarly, the study of separable permutations
goes back to [1] where it was shown that these are precisely the permutations
which are sortable by so-called pop stacks. Separable permutations also arise
in a variety of other applications, for example in bootstrap percolation [8]
and in connection to polynomial interchanges where one studies the possible
ways that the relative order of the values of a family of polynomials can be
modified when crossing a common zero [6].

Let SEP(n) denote the set of separable permutations in S,,, and let P,?
and FE, " denote respectively the uniform probability measure on SEP(n)
and the expectation with respect to that measure. In this paper we study
the length of the longest alternating subsequence in a random separable
permutation. An alternating subsequence of length & in a permutation o =

o1---0op € Sy is a subsequence of the form o;; > 04, < 04, > ---0y, or

k
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oi, < Oy > 04y < ---04,, where 1 <43 < --- < i < n. Let A, = A,(0)
denote the length of the longest alternating subsequence in a permutation
o € S,. Stanley [9] showed that for a uniformly random permutation in S,
the expectation of A, is asymptotic to %n and the variance is asymptotic
to %n. The length of the longest alternating subsequence in a random
permutation avoiding a pattern of length three was studied in [4]. It was
proven that the expectation of A, in a random n-avoiding permutation in
S, is asymptotic to %n and the variance is asymptotic to %n, for any pattern
n € Ss.

We will prove the following theorem.
Theorem 1.
(1.1) ESP A, ~ (2 —V2)n ~ 0.5858n.

Remark. Since a separable permutation is one that avoids the two patterns
2413 and 3142, and since these patterns are alternating, it is perhaps not
surprising that the expected length of the longest alternating subsequence
in a random separable permutation is shorter than that of a uniformly ran-
dom permutation. Note though that it is longer than that of a random
permutation avoiding any particular pattern of length three.

For the proof of Theorem 1 and also in order to state a result for the
asymptotic behavior of the variance, we need to differentiate between four
types of alternating sequences—begin with an ascent and end with an ascent;
begin with an ascent and end with a descent; begin with a descent and end
with an ascent; begin with a descent and end with a descent. An alternating
subsequence of length k& which begins with an ascent and ends with an
ascent in a permutation o = o1---0, € S, is a subsequence of the form
0i, < 0y > - < 0y,. The other three types are defined similarly.

Denote the length of the longest alternating subsequence of each of the
four types of alternating subsequences by AF* . Since the difference of any
two of the random variables AX*F is bounded by two, Theorem 1 holds with
A, replaced by any of the four random variables AF*. From symmetry

considerations, it is clear that

(1.2) AfH B g g B g
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We will prove the following theorem which refines Theorem 1 and gives

the asymptotic behavior of the variance.

Theorem 2. i.

(13)  EyPADT = EyPASY = (2 V2)n - %(3 —-2V2)+0 <1> ;
n
16 — 112
(L4)  Var®(Ab—) = VarP (A=) ~ 62*[71 ~ 0.2218 .
1.

1
(15)  EyPATT = EyPALT = (2 V2)n + 2(3 -2v2)+0 <n> ;

16 — 11v/2
2

Remark. From Theorem 2, it follows that from the limited perspective of

(1.6) VarSP (A5 T) = VarsP(A47) n~ 0.2218n.

mean and variance, Arf +oor A,,’~ behaves as a deterministic translation
of A~ or Ayt by 3 — 2v/2. We note that the quantity 3 — 2v/2 plays
a fundamental role in the proofs; it is one of the roots of the generating
function corresponding to the count of separable permutations—see Section
2.

In Section 2 we present some preliminary material on separable permu-
tations and on alternating subsequences. In Section 3, we define two gener-
ating functions related to the mean of the length of the longest alternating
sequence and evaluate them explicitly. Using one of these generating func-
tions, we prove Theorem 1 in Section 4. In Section 5, we define two gener-
ating functions related to the second moment of the length of the longest
alternating sequence and evaluate them explicitly. Using all four of the
above noted generating functions, we prove Theorem 2 in Section 6. In the
appendix we present a proposition that provides the asymptotic analysis

required in the proofs of Theorems 1 and 2.

2. PRELIMINARY MATERIAL

Let s, = |[SEP(n)|, n > 1, denote the number of separable permutations
in S,,. Let

o0

s(t) = Z Spt"

n=1
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denote the generating function of {s,} 2. For a separable permutation,
define the length of the first indecomposable block and the length of the

first skew indecomposable block respectively by
B""(0) = min{j : o([j]) = [j]}, o € SEP(n);

(2.1)
B "(0) = min{k : o([k]) = [n] \ [n — k]}, o € SEP(n).

By the definition of separable permutations, for each o € SEP(n), with n >
2, exactly one out of B "(c) and By "*(0) is equal to n, and by symmetry,
(2.2)

{o € SEP(n) : BX"(0) = n}| = [{o € SEP(n) : B, "(c)) = n}| = %sn, n> 2.

That is, half of the permutations in SEP(n), n > 2, are indecomposable and
half are skew indecomposable. Partitioning SEP(n) by {B;" = 3}j—y (or
alternatively, by {B] ™" = j}?zl), and using the concatenating structure of
separable permutations, it follows that

n—1

1 1
(2.3) Sp = $18p—1 + 5 Z 5j8p—j + 58”’ n> 2,
=2

and
(2.4) PgeP(Bf’":j):Psep(Bf’":j): 28i%n-i j=2---n—1;

From (2.3) it is straightforward to show that
1
(2.5) s(t) = 5 (1=t — V2 =6t +1), for [t] <3-2V2.
(Multiply both sides of (2.3) by " and sum over n from 2 to co, and then
solve for s(t).) Using the above formula for the generating function, one can

prove that

1
21V/mn3
A more refined version of this asymptotic formula can be found in (7.2) in
Proposition 1 in the appendix. We note that in [5, p. 474-475], the above

formula appears with a mistake—instead of 2%, one finds there 2. (Our s,

(3 —2v2) s,

Sp

is equal to their D,_1.) The sequence of integers {s,}7° ; is known as the
sequence of big Schroder numbers; see A006318 in the On-Line Encyclopedia

of Integer Sequences.
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As noted before the statement of Theorem 2, we differentiate between
four types of alternating sequences, depending on whether they begin with
an ascent or a descent and whether they end with an ascent or a descent,
and denote the length of the longest one of each type by AFE. We note
that a subsequence of length two of the form oy, < 0;, begins with an ascent
and ends with an ascent. We will derive recursion formulas that allow us to
obtain generating functions in explicit forms. In order to make the formulas
work, the following definition will be crucial:

(2.6)

A singleton oy, is considered an alternating sequence both of the type (4, —)
and of the type (—, +);

A singleton oy, is not considered an alternating sequence of the type (+,+)

or of the type (—, —).

In light of (2.6), note that

AfT=A7" =0, AP =A7T =1,
AT =A77 =1
(2.7)
2, 0 =12, L 0, o =12,
Ay (o) = Ay (o) =
0, o =21; 2, o =21.

We remark that Afl + and Ay, take on only even values, and A;{ " and
A, take on only odd values.

The following lemma will play an important role. Let PyP(- |B"™ = n)
<P§ep(‘ B, " = n)> denote the distribution P conditioned on {B" =

Lemma 1. 7. The distribution of AT (A,?f) under Pp°P(- |Bfr” =n)
coincides with the distribution of An’~ (A:{’Jr) under PP (- | By = n);
1. The distribution of AT (AE”L) under PP (- |Bf" =n) coincides with
the distribution of A,"" (A,J{’f) under PP (- |By ™ = n);

iii. The distributions of A}"™ and Ay"" coincide under PyP(- |By" = n).

Proof. Recall that the reverse of a permutation ¢ = o7 - - - 0, is the permu-

tation o'V := o, --- 01, and the complement of o is the permutation o™
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satisfying 0" = n+1—o0y, ¢ = 1,--- ,n. Let ¢"°™ denote the per-
mutation obtained by applying reversal and then complementation to o (or
equivalently, vice versa). All of these operations are bijections of SEP(n);
indeed, they all preserve the property of being simultaneously 2413 and 3142

avoiding. It is easy to see that
B™"(0)=n & B;™(c")=n < B;"(0°") =n, 0 €8,

From the above facts, it follows that

(2.8)
o — 0™ is a bijection of SEP(n) N {B"" =n} to SEP(n) N {B; " = n};

o — "™ is a bijection of SEP(n) N {B{™" = n} to itself.

Also, it is easy to check that

AL (o) = Ay (0%™), o € S
(2.9) AF(0) = Ayt (0°™);
AL (0) = AP (0™).

From the latter two equations in (2.9), it follows that
(2.10) AP (o) = A, (o eom).

Part (i) of the lemma follows from the first line of (2.8) and the first line
of (2.9); part (ii) follows from the first line of (2.8) and the second line of
(2.9); and part (iii) follows from the second line of (2.8) and (2.10). O

3. GENERATING FUNCTIONS RELATED TO THE MEAN OF A,

Define

(3.1)  ¢bF = BP(AEEBI = )y dEE = BP(ARE|B" = n).

Define the generating functions

o

G (t) = Z spe Tt
n=1
[e.e]

G (t)= Z Spe, .

n=1

(3.2)

We will prove the following theorem.
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Theorem 3.

G (t) =
(3.3)

Proof. By (2.2) we have

1 1
(3.4) ESePATE — §c$§i + idﬂfi.
Conditioning on {Bf’n =j},j=1,---,n, we obtain the equation

n
(35)  EYPATT =) BB = ) EP(ATEBIT = ).

j=1
Consider (3.5) with A", From the definition of A;;"" and the concatenating
structure of separable permutations as manifested in (2.3), we have
(3.6)

APTUBI =y B AT B =+ A, =1 n— 1, n >3,
where the random variable on the left hand side is considered under P,°",
the random variable A;r’_ {B{* = j} is considered under Pjsep, the random
variable AT_L’:; is considered under Psefj, and A;"_\{B;r 7 = j} and AT_L’:; are
independent.

To illustrate (3.6), we give three examples of what can occur. Consider
first the permutation 342178956, which satisfies Bf’9(342178956) =4. So
n=29,j=4andn—j = 5. The length of the longest alternating subsequence
that begins and ends with an ascent is six. Such an alternating subsequence
is built from a longest alternating subsequence beginning with an ascent and
ending with a descent that appears in the first j entries of the permutation—
3421, and then concatenating this with a longest alternating subsequence
that begins with a descent and ends with an ascent in the last n — j entries
of the permutation— 78956. There are two possibilities for the first piece,
namely 342 and 341, and there are three possibilities for the second piece,
namely 756 and 856 and 956. Consider now the permutation 124378956,
which satisfies Bf’9(124378956) =1.Son=9,j=1and n—j =38. The
length of the longest alternating subsequence that begins and ends with
an ascent is six. Such an alternating subsequence is built from a longest

alternating subsequence beginning with an ascent and ending with a descent
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that appears in the first j entries of the permutation— 1, and concatenating
this with a longest alternating subsequence that begins with a descent and
ends with an ascent in the last n — j entries of the permutation— 24378956.
There is one possibility for the first piece, namely 1, and there are three
possibilities for the second piece, namely 43756, 43856 and 43956. Note that
for this to work, it was necessary in (2.6) that a singleton be defined as an
alternating sequence of the type (+,—). Finally, consider the permutation
324561789, which satisfies Bf’9(324561789) =6. Son =9,j7 =6 and
n—7j = 3. The length of the longest alternating subsequence that begins and
ends with an ascent is four. Such an alternating subsequence is built from a
longest alternating subsequence beginning with an ascent and ending with
a descent that appears in the first j entries of the permutation— 324561,
and then concatenating this with a longest alternating subsequence that
begins with a descent and ends with an ascent in the last n — j entries
of the permutation— 789. There are six possibilities for the first piece,
namely 341,351,361,241,251,261, and there are three possibilities for the
second piece, namely 7, 8, 9. Note that for this to work, it was necessary
in (2.6) that a singleton be defined as an alternating sequence of the type
(= +).

Now consider (3.5) with A,,’". From the definition of A, and the con-

catenating structure of separable permutations as manifested in (2.3), we

have
(3.7)
A;’ﬂ{Bf’" =j} dist A;’_|{Bf’j =j} +A;’__;7 j=1,---,n—1, n>3.

To illustrate (3.7), we give two examples of what can occur. Consider first
the permutation 342178956, which satisfies B,""(342178956) = 4. So n =
9,5 = 4and n—j = 5. The length of the longest alternating subsequence that
begins with a descent and ends with an ascent is five. Such an alternating
subsequence is built from a longest alternating subsequence beginning with
a descent and ending with a descent that appears in the first j entries of the
permutation— 3421, and then concatenating this with a longest alternating
subsequence that begins with a descent and ends with an ascent in the last
n — j entries of the permutation— 78956. There are four possibilities for

the first piece, namely 32, 42, 31, 41, and there are three possibilities for
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the second piece, namely, 756, 856, 956. Consider now the permutation
145678923, which satisfies BT’9(145678923) =1 Son =297 =1 and
n—j = 8. The length of the longest alternating subsequence that begins with
a descent and ends with an ascent is three. Such an alternating subsequence
is built from a longest alternating subsequence beginning with a descent and
ending with a descent that appears in the first j entries of the permutation—
1, and then concatenating this with a longest alternating subsequence that
begins with a descent and ends with an ascent in the last n — j entries of the
permutation— 45678923. There is one possibility for the first piece, namely
the null set, and there are six possibilities for the second piece, namely x23,
with € {4,5,6,7,8,9}. Note that for this to work, it was necessary in
(2.6) that a singleton be defined not to be an alternating sequence of the
type (—, —).

Taking expectations in (3.6), and using (3.5) along with (3.4) and (2.4),
we obtain

1 S81Sn—1 +,— 1 _ _
ERPAT* = Sobt 4 dpt = A ( Sensi dat) +
n

nllgs 1 1
Z2Jnj<+7 + C’+—|— d_’+>+ ci’+,n23,

% 9 n—j T 9%n—j 92

7j=2
or equivalently (noting from (2.7) that ¢, = 1),
(3.8)
1 518 1 K PP 1

+,+ _ S18n-1 —,+ 2°)°Nn—] +,— 7+ -+
== <1+2n 1 2dn 1>+;Sn (cj +2Cn]+2dn J>,nz3.
Taking expectations in (3.7), and using (3.5) along with (3.4) and (2.4), we
obtain
sep gt _ Lt e N —+
En An _Ecn + d = Sn ¢ +2n 1+2dn 1

s ls S 1 1
PP ”J<j‘"+2 ’++2d;’§>+2cn’+n>3
j=2 Sn

or equivalently (noting from (2.7) that ¢;’~ = 0),
(3.9)

_11
1 8$1Sn—1 (1 _ ~— isisn_i (1
§d;’+: 19n—1 (2 n | 2dn:‘g)+§ 2‘787”<ij +2cn7+‘7+2dn7+‘]) nZ?)

Sn
‘7:
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By Lemma 1, we can substitute in equations (3.8) and (3.9) so that each
of them is given only in terms of ¢. "~ and ¢ ~. Indeed, by Lemma 1, we

have

(3.10) dbt =c,

I _7+ —_ +7_ _7+ —_ +7_
n 1 Cn = Cp 7dn =6y -

Using (3.10) to substitute in (3.8) and (3.9) and recalling that s; = 1, we

obtain the two equations

L~ Sn-1 B O L L T
§cn’ = s (1+cn71) + . QT (cj +Cn—j) ,n > 3;
(3.11) o .
%c:{’_ = e+ 2 LJ;”*J' (7 +cr5)m=s
=

Multiplying (3.11) by 2s,t™ and summing over n gives

(3.12)
) 00 ) n—1
Z spCy t" =2t Z Sp—1 (1 + c;“:l) "+ Z Z 8jSn—j (c;-“_ + c:’__j) "
n=3 n=3 n=3 \ j=2
) 00 00 n—1
Z Spel Tt =2t Z Spo1c, " 4 Z Z 5jSp—j (cj_’_ + cj{’_}) t".
n=3 n=3 n=3 =2
We have
(3.13)
oo n—1 oo n—1 00
D\ 2sisnege T =D D sty |t suat™ T =
n=3 \ j=2 n=3 \ j=1 n=3
e n—1 o)
n=2 \ j=1 n=2
00 00 00
(Z snc:{’t”> ( smﬁ") —t Z Sp_1t" L,
n=1 n=1 n=2
and similarly,
(3.14)
o) n—1 o9 n—1 o)
D | D ssnegeny | =D | D sisngenly |1t sweaea 5t =
n=3 \ j=2 n=2 \ j=1 n=2

(o] o0 o
(Z snt"> (Z snc;bi"_t”) —t Z sn,lcg’:lt”_l.
n=2

n=1 n=1
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Also, noting from (2.7) that ¢, = 0, we have

(3.15)

00 n—1 oo n—1 oo 00
n=3 \ j=2 n=2 \ j=1 n=1 n=1

Since the conditional probability measure Py (- |BfL 2 = 2) gives prob-
ability one to the permutation 21, it follows that c¢;’~ = 2. From (2.7),
;7 =1,¢/"" =1and ¢;"~ = 0. Using these facts along with the fact that
s1 =1, sp = 2, it follows from (3.12)-(3.15) and (3.2) that
(3.16)

G (t) — 4% = 2t(s(t) — t) + 2t(GT(t) — t) + GT(t)s(t) — ts(t)+

G (t)s(t) —tGT(t)
and
(3.17)

GPm(t) =2t —t =2t(GT(t) —t) + G (t)s(t) + G (t)s(t) — tG T (¢).

The equation in (3.16) simplifies to
(3.18) G (t) = (25(t) +t) G (t) + ts(t).

Using (3.18) to substitute for G~ (¢) in (3.17), and performing some alge-

bra, we obtain

o t(1+ s°(t))
(3.19) GT(t) = 1—t—s(t) —282(t) —ts(t)’

From (2.5), we have

(3.20) 52(75):%(t2—4t+17(17t)\/t276t+1).

Using (2.5) and (3.20), we obtain

(3.21) 1—t—s(t) —25%(t) —ts(t) = —%(ﬁ —6t+1)— %(t—3)\/t2 — 6t +1
and

1 1—1¢
(3.22) 2B +1= w1t e

2 2 2
Substituting (3.21) and (3.22) in (3.19), and multiplying the numerator and
denominator by —2 yields
t(—3+4t—t2+(1 VB —6t+1)
2 —6t+1+(t—3)We2—6t+1

(3.23) Gt (t) =
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Writing —34+4t —t2=1—(t—-2)2=(1—t+2)(1+t—2) = (t—3)(1 — ),

we have

t<—3+4t—t2+(1—t)\/t2—6t+1)

‘- 1) t—34+Vt2—6t+1 t(1—t)

2 6t+1+(t-3)VE _6t+1 V& _6t+1

The formula for G™~ in (3.3) follows from (3.23) and (3.24). The formula
for G=~ in (3.3) follows from the formula in (3.3) for G™~, (3.18) and (2.5),
along with a little algebra. O

4. PROOF OF THEOREM 1

To prove the theorem, it suffices to prove (1.1) with E5P A}~ in place
of EyPA,, since A,(0) — At (o) € {0,1,2}, for all o € S,,. By Lemma 1,
dt~ = ¢t = ¢t From this and (3.4), we have E5P A~ = ¢ ~. Thus,
from (3.2), it follows that the coefficient of ¢ in the power series for G~ (t)
is spE5P A7, By Theorem 3 along with Proposition 1, which appears
in the appendix, the coefficient of t" in G~ (¢) is an—1 — an_2, where a,
satisfies (7.3). Thus, we have

(4.1)
1 .
SnEfzepA:zr’i =0apn-1 —0p-2"~ 53— 1 ((3 - 2\6)77#% -3~ 2\@)7#%) -
21,/mn?
1 1
S T3V T2 - 2) = < (3-2v2) MR (2- V).
21,/mn? 21,/mn?
By (2.5) and by (7.2) in Proposition 1 in the appendix, we have
1 —ntl
sn ~ ——5 (3 -2v2) 7"z,
21,/mn2

Using this with (4.1), we conclude that ESP AT ~ (2 — v/2)n, which com-
pletes the proof of the theorem. O

5. GENERATING FUNCTIONS RELATED TO THE SECOND MOMENT OF An

Define
(5.1)
O = Bx? (Ar*P|By" = n) ;. Dot = B ((AF*71B " =n).
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Define the generating functions

o0
HO (1) =) s,Cbt™;
n=1

o

Ho(t) =) snCpt™.

n=1
We will prove the following theorem.

Theorem 4.
(5.3)

HP () =221 —t)* (#* — 6t + 1)

[

3 2
o i ek

- _
3 (2 —6t+1)

+
1 11
51&2(1 —t) (B —6t+1)> — 5152(1 —1);

—5t3 4 8t2 — 3t 1
- :_3 SR -6t 1)+

H=(t) = H (1)

1 1
gt A - 0 -6t + 1)2 + St(1—t) - SH(E =6t + 1)2 +202(1 — £)(#2 — 6t + 1) 2.

1
2
Proof. The notation E5P ((Ajl"b + AP B = B = — j) is
employed in several equations below, where §; € {+,—}, fori = 1,--- 6.
This indicates that Ajl"sz and Aff’_";f‘ are independent, with A§1,62 consid-
ered under the measure E]S-ep(' ]Bf"*’j = j) and Aiﬂ";‘* considered under the
measure E, (- \B‘fﬁ’n_j =n-—7j).

We proceed in the manner of the proof of Theorem 1. Using (3.6), (2.4),
(2.2) and (5.1), and noting from (2.7) that A"~ = 1, we have

1 1
(A7) = 3G+ 3Dt =

(1 - - 1 - —n—
81601 <2E((1+An’ﬁ>213f’" Pen—1)+ 5B (04" 1=”1))+

Sn

n—1

1sisp_il _ _ . .
> (AP AZPIBE = BT =0 )+
L2 s, 2 J J
Jj=2
n—1

1sjsp—;1 _ _ S . 1
=2 n
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Expanding the terms in the equation above, cancelling the term %C’TJ{ "+ from

both sides and using the notation from (5.1) and (3.1), we have

1 318 —1 —,+ 1 —+ —,+ 1 —+

§D7-1,_7+ = # (1 + Cn—l + icn—l + dn—l + EDn—l +

15 8580 4 9gt ot L ot 15 8580 ct 4 9ct gt 4 Dot

12 G 2 e O ) ) (G 2 A+ D),
=2 " =2 "

n > 3.

By Lemmal, Dy" =Cp ", Dyt =Ch 7, Crt =CF T et =T dnt =
e, for all n. Making these substitutions in the equation above, multiply-

ing both sides by 2s,, and recalling that s; = 1 gives
(5.4)

n—j

n—1
$nCir™ = $n_1 (2 +dc + 20;;‘1)+Z 5j8n_j (C;.“‘ +2c) T+ C:;;) ,n>3.
j=2

To derive a second recursion equation similar to the one in (5.4) we con-
sider A,,"". Using (3.7), (2.4), (2.2) and (5.1) and noting from (2.7) that

A, =0, we have

_ 1 1
Efzep(An7+)2 = 5071 o+ + §Dn7+ =

el _ - 1 - —n—
P (CB ((A2B " = n = 1) 4 S B (A7) B =n—1) ) +
Sn 2 2
n—1
18;8n_;1 I : -
S B (A7 AABY = BT =n- )+
- 2 s, 2
7j=2
n—1

1sj8p—j1 __ _ ; i 1
S EE (A7T 4 ATPIBIT = Br" T =0 - ) 4+ SO, n> s
= 2 s, 2 J J 2

Expanding the terms in the equation above, cancelling the term %C’E " from

both sides and using the notation from (5.1) and (3.1), we have

-1
1 $18p—1 (1 _ 1__ 1 o= $iSp_i __ __ _ _
A4 2lon=1 2 ~—F | 2yt - 3jSn—j , , + -+
§Dn -, <20n_1—|—2Dn_1>+4Z ) (Cj + 2¢; cnfj—i-Cnfj)—i-
=2
17 s,
i5n—j (= —=gt 4 p—t
=2

By Lemma 1, D,V =Cl . cnt =0 en T =67, dy T = ¢, for all

n. Making these substitutions in the equation above, multiplying both sides
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by 2s, and recalling that s; = 1 gives
(5.5)

n—1
snCH ™ =28, 107 + Z 5j8n—j <Cj_’_ + 20]-_’_0?__]- + C;E;) , n>3.
j=2

Multiplying (5.4) and (5.5) by t" and summing over n gives

(5.6)
o o oo o]
D snC Tt =2t sy at" ALY spac T 26y s 1Ot
n=3 n=3 n=3 n=3
00 n—1 [e's) n—1 %s) n—1
D\ 2o simnmdCFT | 0 D | D s Cay | €42 | D s e |t
n=3 \ j=2 n=3 \ j=2 n=3 \ j=2
and
00 e} e’} n—1
Y 5Ot =2t sy Ot Y Y Csyse O |
n=3 n=3 n=3 \ j=2
(5.7)
00 n—1 e’} n—1
D | 2 sni Gty | 112D | D sisnmiey el | ¢
n=3 \ j=2 n=3 \ j=2
We have sy = 2. By (2.7), C{"~ =1 and C;>~ = 0. By the explanation
in the paragraph after (3.15), we have C,”~ = 4 and CQJ“_ = 1. The first

and second double sums on the second line of (5.6) satisfy (3.13) and (3.14)
respectively with ¢~ replaced by C7~. The third double sum on the

second line of (5.6) satisfies similarly,

[e%s) n—1
. P P n __
g 8j8n—jC;’ €, t =
n=3 \ j=2
(o] 2 o0
g spel Tt —tE sn_lcjl’:lt"_l.
n=1 n=2

The double sum on the first line of (5.7) satisfies (3.15) with with ¢~
replaced by C~ and the first double sum on the second line of (5.7) satisfies
(3.14) with ¢~ replaced by C~. The second double sum on the second

line of (5.7) satisfies similarly

00 n—1 0o 00
Sisp_ic el T = SnCy  t" speb Tt
J J=3 n—j

n=3 \ j=2 n=1 n=1
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Using the above facts with (5.2), we obtain from (5.6) and (5.7)
(5.8)
Ho(t) =8t =2t(s(t) —t) + 4t (G (t) —t) + 2t (HT(t) — ) +

sHT(t) —ts(t) + st)H™(t) —tHD ™ (t) + 2(GT7(1)? — 2tGT (1)
and

HO (t)—2t> —t =2t (HY ™ (t) — t) + s()H ™ (¢)+
(59) sHT(t) —tH (1) +2G7~ (1)GT (t).

The equation in (5.8) simplifies to
(5.10) H ™ (t) = (2s(t) +t) H™(t) + ts(t) + 2tGT(t) + 2(GT ()%

Using (5.10) to substitute for H™~(¢) in (5.9), and then solving for
H* 7 (t), one obtains after some algebra,
(5.11)
(1) = t+ts2(t) + 2G ()G () + 2ts(1)GH(¢) + 2s(t)(G+v_(t))2.
1—t—s(t) — 2s2(t) —ts(t)

Substituting for G~ (¢) and G (t) from (3.3), substituting for s(t) from
(2.5) and substituting for s%(¢) from (3.20), and performing a lot of algebra,
one finds that the numerator in (5.11) satifies

(5.12)
t+ts2(t) + 2G7 7 (H)GT (1) + 2ts(t) G (t) + 2s() (G (1) =

54 o 3, t(l—1t) t2(1 —t)? t2(1 —t)%(t - 3)
3 —At* + —t — V2 —6t+1— - :
2 *3 2 T V2 =6t + 1 2 —6t+1
Let

(5.13) X=V2—6t+1
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and Y = t — 3. The denominator of H"(¢) in (5.11) was calculated in
(3.21), and is equal to —3(X? 4+ Y X). We have

(5.14)
1 _1(1 1 -
X24+YX Y'X X+Y'
1(1+ Y—X)_ 1 1 +t—3—\/t2—6t+1 B
Y X  X2-Y?2 t-3\Ve2_6t+1 t2—6t+1—(t—3)2)
1 1 t—3—Vt2—6t+1)
t—3\ V2 —6t+1 8 B
1 1 ViZ2—6t+1

-+
t—3)We2—6t+1 8 8(t— 3)
From (5.11)—(5.14), we obtain

(5.15)
o 1 1 Ve -6+l
H™(t) = 2<(t_3)m s Ts(E—3) )X

55 o 3 t(1—1) t2(1 —t)? t2(1 —t)2(t — 3)
3 AP ) - 26t + 1 — -
<(2 +2) 2 * V2 =6t + 1 2 —6t+1

Denote the three expressions in the first parenthetical factor in (5.15) by
v,t = 1,2,3, and denote the four expressions in the second parenthetical
factor in (5.15) by 3;,7 = 1,2,3,4. We multiply out the right hand side
of (5.15) in the order of the following double sum: —2 Z?zl S B We
have 2 83+7384 = 0. Also, after some algebra, one finds that (183 + y284) =

2 2
tg(é:?) , which cancels with the term ~383. Writing down the other seven

terms in the order of the double sum above, and recalling the definition of
X in (5.13), we obtain

(5.16)
—5t3 4+ 82 —3t 1 513 —8t2+3t 53+ 82 — 3t
() = =2 oy * il X+
t—3 X 8 8(t —3)
- X 2 —6t+ 1)+ 2t2(1 — t)>—.
i3 T D21 55
We have
t(1—t t(1—t 53 — 8t2 + 3t
(t 3)+8(t 3)(t2—6t+1)+8 Lk
(5.17) - (t—3)

1 1 1
g1t(1 —t)(t—3) — é(—3t + 8t2 — 5t3) = —§t2(1 —1)

)
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and

—5t3 2 1-— 1
5t° + 8t =3t 1( t):7t2(1_t)‘
8(t — 3) 8 2

(5.18)

Now (5.3) for H~(t) follows from (5.16)-(5.18) and (5.13). We obtain (5.3)
for H=~(t) from (5.10), (5.3) for H~(¢) and (2.5). O

6. PROOF OF THEOREM 2

We first proof part (i). Then we make minor additions to that proof
to obtain part (ii). By (1.2), it suffices to consider A}~ for part (i). By
(2.2) and (5.1), we have EyP(A} )% = %C,T’_ + %D,}F’_, and by Lemma 1,
D~ = Cpt = G Therefore, EyP(A )2 = G~ Thus [t"]H (1),
the coefficient of #" in the power series expansion of H" ™, is equal to
snEnP (A 7)%. As noted in Section 4, [t"]GH (1) is equal to s, EyP AL,
Thus

(6.1)
n +,— nyy+,— 2
Ve (A1) = B ()t = PO (S
Sn sn
We first consider the asymptotic behavior of E5P A~ = EIGTT®)  From

Sn
3.3 in Theorem 3 and from Proposition 1 in the appendix, we have

(6.2) [t"GT (1) = an_1 — an_o,

where ay, satisfies (7.3). From (7.3),
(6.3)

5
n2

B2 (13- 3-avEE-2Y 1))
RV (22 -t | 8220 (n—i)? +O< )) b2

Motivated by (7.2), which gives the asymptotic behavior of s,, we write
(6.3) in the form

N|=

_l’_

1 <(3—2\/§)in( n

V(3 - 2V2)" 22inza, 7 —

(6.4) | T 3-2/2
(3 — 4\@;(23 — 2V/2)i n 0(1))71. ~1.2.

)

3
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Using (6.2), (6.4) and (7.2), we have
(6.5)

nyy+,— B
peen - = G (0) (1 24-9v21 o( ))
Sn 32 n?

—2V2)" n 1 (3—4V2)(3 - 2V2) 1
- sz ( n( )2 + 3 +O(

(2002 ek

& (3 — 2/2)° i (3—4v2)(3 - 2V2) 1
> (-1 ( 7% n(l+5-)+ 2 +O<n> =

=1

(g_ﬂ)n—i(3—2x/§)+0<i>,

where the last equality follows after some algebra. This proves (1.3). From
(6.5) we obtain

[tn]G+7—(t)>2 (6 v 10 —27\/§n o).

Sn

(6.6) (ExPAf™)" = (

Now we turn to the asymptotic behavior of EyP (A4 7)2 = W By
(5.3) in Theorem 4, which gives the formula for H*~(¢), and Proposition
1 in the appendix, the leading order contribution in the coefficient of " in
H™~(t) comes from the leading order contribution in the coefficient of t" in
the term 2t%(1—¢)? (¢* — 6t + 1) 7%, while the next order contribution in the
coefficient of ¢" in H~(t) comes from the next order contribution in the
coefficient of ¢" in 2¢*(1—1t)* (t* — 6t + 1) 2 and also from the leading order
contribution in the coefficient of ¢" in the term %852_315 (2 — 6t + 1)7%.

Using the notation r; = 3 — 24/2, from (7.4) it follows that

the leading order contribution in the coefficient of ¢" in

—5t3 + 8t2 — 3t -1
6.7) L :_83 & (t*—6t+1) 7 is

(3 _ 2\/5) —n"r%
4217
Writing 2t2(1 — )2 = 2¢% — 4¢3 + 2t*, it follows from Proposition 1 that

the two leading orders in the contribution to the coefficient of " in 2¢2(1 —

(3(n - 1)_% —8ri(n — 2)_% + 5r2(n — 3)_%> = 1.
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_3
t)2 (t2 — 6t + 1) 2 are contained in 2c,—o—4ay,_3+2ay,—4, where «;, satisfies
(7.5). Thus, from (7.5),

the leading order contribution in the coefficient of ¢"* in

_3
2

201 N2 (42 I
(6.8) 20°(1 —t)* (£* — 6t + 1) ? is given by
3—2v2)7"t2
( \O ’ (2(n—2)%—4r1(n_3)%+zr%(n_4)%) = I,
4-21\/m
and
(6.9)

the second leading order contribution in the coefficient of t" in

w

2t*(1 —t)? (t* — 6t + 1) 2 is given by

(24 — 9v/2)(3 — 2v/2) "2
128 - 21/

(Q(n —2)72 —4ry(n—3)72 + 23 (n — 4)—%) =

By (7.2),

the first two leading order terms in s, are

(6.10) 1 1 12v/2 -9
—(3-2v2) e [ e Ln_g = Iy
VT 21 21 .32

From (6.7)-(6.10), we conclude that

t"H~
the first two leading order terms in E5P(A7)2 = FHET )
(6.11) on

L+ 1+ I
are contained in % and are of the form An® + Bn.
4
From (6.7) and (6.10),
(6.12)
1 3 _8m 5r2
L a2i \(m-1)2  (-22  (m-32)
Iy L5 4 12v2-9,, -3 N
21 27.32
1 1 1
%(3(7121)2 —87"1(#)24-57"%(”?3)2) _ 3—87’14—57'% O(1) —
| 4 U292 9V31 T mrows
32 n

3—8(3—2v2)+5(3—-2v2)
4

C +0(1) = (16 — 11vV2)n + O(1).
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From (6.8) and (6.10),
(6.13)

L+ (243297:[)

2n 2 32n

(2a-Dna- 2y btn -2 v oc) (f

(6 — 4v2)n* + (—% + %\@)n +O(1).

From (6.9) and (6.10),

24— 9f( 2n —2)"3 —4r1(n—3)—%+2r%(n—4)—%)

I3 _ _128.2%
I L 4 12v2-9,
21 3221
1 n \L
24— 9\/ ((n 2)2 *27“1(71 3)2 +T1(n 4)2>
6.14 _ "=
( ) 14+ 243221\/5
24 — 9v/2 24— 9v2
1 (1—27"1—|—7“1)n—|—0() o1 S - 1)*n+0(1) =
24 — 9v/2 5 27 75
—)(2—-2Vv2 =|—-—= .
(1 )2 -2v2)"™+0() <4 T 2>n+0(1)
From (6.11)-(6.14) we conclude that
(6.15)
n +,—
Erslep(A;r,f)2 — [t ]H (t) _
Sn

21 2
(64\/§)n2+<1611\f7f+9 L 2>n+0(1):

16 4 16
(6 — 4v/2)n% + (3 — 2v/2)n 4+ O(1).

Using (6.15) with (6.6) and (6.1), we conclude that

n

(6.16) VarSP (A7) ~ (3 — 2/2 5 n = 5

which proves (1.4).
We now consider part (ii). By (1.2), it suffices to consider A,

consider the asymptotic behavior of E5 Y A,,"~ = MGS;T;

10 — 74/2 16 — 11v/2
\f—l- f = \[n,

—. We first
® . From (3.3), we
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have
(6.17) ("G (t) = [t"]G*”(t) — [t”]%t(t2 — 6t + 1)%, n > 3.

By (7.1), we have
(6.18)

1 1
[t”]it(tQ — 6t +1)

_ %bm = ——B-2v2)"E (n 3 40 (7).

21 /7

NI

From (6.18) and (7.2), we obtain

(NI

(6.19) [t -6t )z 3-2vV240 <;> .

Sn

From (6.17), (6.5) and (6.19), we conclude that
"G ()

Sn

(6.20) EFPAT = =@2-V2)n+ 2(3 —2v2)+0 <i> ,

which proves (1.5).
‘We now turn to the variance. We have
(6.21)

Var? (47 ) = BP(Ar - (B Ay )t = 0 —(WG_’_“)>2 .

n Sn

From (6.20), we have

(6.22) (E5PA7)2 = (W"“)>2 = (6—4\/§)n2+wn+0(1).

Sn 2

From (5.3) and Proposition 1 in the appendix, we have
(6.23)
[(t"H™™(t) = [t"]HJ“*(t)+[t"]2t2(1—t)(t2—6t+1)7%+ lower order terms in n.

From (7.3), we have

(712621 — ) (2 — 6t + 1) 72 = 2(an—s — an_3) =

(6.24) 9t s B P
F(S_Qﬁ) 32 -2) (n 2+ 0 (n 2)) :

From (6.24) and (7.2), we obtain

(6.25)

[¢7)26(1 — £)(#2 — 6t + 1)

= 2(3-2V2)(2—V2)n+0(1) = (20—14v2)n+0(1).
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From (6.23), (6.25) and (6.15), we obtain

(6.26)
PIHZTO) _ (6 4y/3pm? + (3 — 22 + (20 — 14vZ)n + O(1) =

(6 — 4v2)n? + (23 — 16v/2)n + O(1).

From (6.21), (6.22) and (6.26), we conclude that
30 — 21\/§n 16— 11\/§n
2 B 2 ’

VariP(A7) ~ (23 — 16v/2)n —

which proves (1.6).
7. APPENDIX

We present a proposition that contains the asymptotic analysis needed in
the proofs of Theorems 1 and 2. For a function f(¢) given by a power series

expansion f(t) =Y > fat", we use the notation [t"]f(t) = fn.

(3 — 2v2) "tz x

1

NS

D=

Proposition 1.
by = [t"] (t* — 6t + 1)

(7.1)
(2}%—3 + 712f29n_% + O(n_;)> )
16 - 21
o = [ (1 —t— (t22_ 6t -+ 1)2) _ \/1#3 —2yB)
(7.2)
LIS wn—g +0( —5)>
21 3227
an = [t"] (t* — 6t + 1)*% _B= 2\\/@_”_2
(73) in_% 3_4\/§n_5+0(n_%)
21 3221
. (t2—6t+1)‘% (3-2v2)™ 2/ 1 .1 3
a t—3 VT <4 21n2+0<n 2>>




LONGEST ALTERNATING SUBSEQUENCE IN SEPARABLE PERMUTATIONS 25

an, = [t"] (£ — 6t + 1)’% (B-2v2) s X

N
(7.5) 1 24 — 9v/2
3n%+ — 3 n_%%—O(n_%) .
421 128 - 24
Proof. For a € C, write
(7.6) (2 —6t+1) =1 )o@ Ly
& ro

where
r=3-2V2, ry=3+2V2

By [5, p. 381], one has
(7.7)

n AN ala—1) 1
[t]<1_7‘1> _EF(O() (1+2n+0(n2)>7f0ra€C—Z<o

Noting that ri7re = 1, a direct calculation of the first two Taylor coefficients
—a

of (1 — %) about t = ry yields

(7.8)

t\ ¢ 1 « t t
1—— = — 1—-— |40 1—2>.
( 7‘2> ¥ (ra =) ¢ g — rp)otl < 7‘1> (( 7°1>

From (7.6) and (7.8) we obtain
(7.9)

(t2—6t+1)7a:;(1—i)_a— a <1—t>1_a+
r{(rg — 1) el Tf‘_l(rg —rp)etl

O <(1 - :1)2—&> .

It then follows by the transfer theorem [5, Theorem VI.3, p. 390, Example
VL2, p. 395] that the asymptotic behavior of [t"](t? — 6t + 1)~ can be
read off term by term from (7.7) and (7.9). Grouping the appropriate terms

yields
(7.10)
1 1
"2 —6t+1)" = — n 14
("] ) r (F(a)rf‘(rg —7)®

« a—1 _ 71 no—2 o3 o 7.
ri(ra —r)® <2F(a) (ro —r1)T(a — 1)) +0O( )>7 € C—Z<o.
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Substituting 1 = 3—2v/2 and ro = 3+24/2 in (7.10), and choosing o = —%,
a = 1 and a = 2 respectively, yields (7.1), (7.3) and (7.5) respectively.
Of course, (7.2) follows immediately from (7.1). From the transfer theo-
rem it follows that the leading order term in the asymptotic behavior of
[t)g(t) (2 — 6t + 1)_%, where ¢(t) is analytic in a disk, centered at the ori-
gin, of radius larger than 7 is g(r1) times the leading order term in the
asymptotic behavior of [¢"] (t* — 6t + 1)7%. Choosing g(t) = 15, (7.4) fol-
lows from (7.3). O
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